👤

PLEASE HELP ME. MATH Grd.7

yung x na may 2 sa dulo squared po un hindi lang matype dto like this x2. pakisimplify lang po at solution din po

1. (x2 + 2x + 4) + (3x2 + 2x + 5)

2. (3x2 - 2x + 7) + (5x2 + 8x - 5)

3. (X2 - 7x + 4) + (9x2 + 6x + 4)

4. (2x2 + 7) + (-7x2 - 8)

5. (-6x2 + 5x - 3) + (x2 - 2x + 7)

6. (-3x2 + 4) + (-9x2 - 5x + 3)

7. (5x2 - 10x + 3) + (4x2-1)

8. (x2 + 2x - 1) + (x3 - 2x + 1)

9. (3x3 - 4x2) + (7x2 + 6)

10. (-12x2 - X + 8) + (9x2 - 16)

11. (-x? - x - 1) + (-X2 - 3x + 7)

12. (13x) - 6x - 15) + (-9x2 + 15)

13. (-4x2-3x - 9) + (8x2 + 5x + 10)

14. (-10x2 + 14) + (x3 + 9x2)

15. (-8x2 + 2x - 6) + (x + 4)

16. (2x) - 2x2 - 10) + (3x + 5)​​


Sagot :

[tex] {4x}^{2} + 4x + 9[/tex]

Simplify the expression

Rewrite the expression

[tex]( {x}^{2} + 2x + 4) + {3x}^{2} + 2x + 5[/tex]

Remove unnecessary parentheses

[tex]x {}^{2} + 2x + 4 + {3x}^{2} + 2x + 5[/tex]

Collect like terms

[tex] {x}^{2} + 3x[/tex]

[tex]1 {x}^{2} + {3x}^{2} [/tex]

[tex](1 + 3) {x}^{2} [/tex]

[tex] {4x}^{2} [/tex]

[tex]2x + 2x[/tex]

[tex](2 + 2)x[/tex]

[tex]4x[/tex]

Calculate

[tex] {4x}^{2} + 4x + 9[/tex]

2.

[tex] {8x}^{2} + 6x + 2[/tex]

Simplify the expression

Rewrite the expressions

[tex] {3x}^{2} - 2x + 7( {5x}^{2} + 8x - 5)[/tex]

Remove the parentheses

[tex] {3x}^{2} - 2x + 7 + {5x}^{2} + 8x - 5[/tex]

Collect like terms

[tex] {3x}^{2} + {5x}^{2} [/tex]

[tex](3 + 5) {x}^{2} [/tex]

[tex] {8x}^{2} [/tex]

[tex] - 2x + 8x[/tex]

[tex]( - 2 + 8)x[/tex]

[tex]6x[/tex]

Subtract the numbers

[tex] {8x}^{2} + 6x + 2[/tex]

3.

[tex] {6x}^{2} + x - 1[/tex]

Simplify the expression

Rewrite the expression

[tex]( {x}^{2} - 7x + 4) + ( {5x}^{2} + 8x {}^{2} - 5)[/tex]

Remove unneccesary parentheses

[tex] {x}^{2} - 7x + 4 + {5x}^{2} + 8x - 5[/tex]

Collect like terms

[tex] {x}^{2} + {5 {x} }^{2} [/tex]

[tex]1 {x}^{2} + {5x}^{2} [/tex]

[tex](1 + 5) {x}^{2} [/tex]

[tex] {6x}^{2} [/tex]

[tex] - 7x + 8x[/tex]

[tex]( - 7 + 8)x[/tex]

[tex]1x[/tex]

[tex]x[/tex]

Calculate the difference

[tex]4 - 5[/tex]

[tex] - (5 - 4)[/tex]

[tex] - 1[/tex]

4.

[tex] - {5x}^{2} - 1[/tex]

Simplify the expression

[tex]( {2x}^{2} + 7) + ( - {7x}^{2} - 8)[/tex]

Rewrite the expression

[tex] {2x}^{2} + 7 - {7x}^{2} - 8[/tex]

Remove unnecessary parentheses

[tex] - {5x}^{2} + 7 - 8[/tex]

Collect like terms

[tex] - {5x}^{2} - 1[/tex]

Calculate the difference

5.

[tex] - {5x}^{2} + 3x - 2[/tex]

Simplify the expression

[tex]( - {6x}^{2} + 5x - 3) + ( {x}^{2} - 2x + 1)[/tex]

Rewrite

[tex] - {6x}^{2} + 5x - 3 + {x}^{2} - 2x + 1[/tex]

Remove unnecessary parentheses

[tex] - {6x}^{2} + {x}^{2} [/tex]

[tex] - {6x}^{2} + 1 {x}^{2} [/tex]

[tex]( - 6 + 1) {x}^{2} [/tex]

Calculate the sum

[tex] - {5x}^{2} [/tex]

[tex]5x - 2x[/tex]

Collect like terms

[tex](5 - 2)x[/tex]

Subtract the numbers

[tex]3x[/tex]

[tex] - {5x}^{2} + 3x - 2[/tex]

Calculate the sum