👤

A car manufacturer determines that it's profit, P, in thousands of pesos can be modeled by the function P(x) =0.001 25x^4+x-3, where x represents the number of cars sold. What is the profit at x=150?
Choices :
A. Php 75.28
B. Php 632,959.50
C. Php 3,000,000.00
D. Php 10,125,297.00

Please answer correctly or I will report you​


Sagot :

Answer:

POLYNOMIAL FUNCTION (PROFIT)

Direct Substitution to Evaluate the Polynomial Function

A car manufacturer determines that it's profit, P, in thousands of pesos can be modeled by the function P(x) =0.00125x⁴ + x - 3, where x represents the number of cars sold. What is the profit at x = 150?

A. Php 75.28

B. Php 632,959.50

C. Php 3,000,000.00

D. Php 10,125,297.00

Solution:

Ihalili ang given na 150 sa variable na x.

[tex]\sf{P(150) = 0.00125(150)⁴ + 150 - 3}[/tex]

I-simplify ang exponent.

[tex]\sf{P(150) = 0.00125(506,250,000) + 150 - 3}[/tex]

  • Lagi nating tatandaan na ang numerong nasa taas ng base ay yun ang nagtatakda kung ilang beses natin imumultiply ang sarili nito.

  • Since 4 ang exponent ng x value na 150, apat na beses nating ita-times ito by itself.

  • [tex]\blue{\sf{150 × \: 150 \: × 150 \: × 150 = \: 506,250,000}}[/tex]

[tex]\underline{\sf{Simplification}}[/tex]

[tex]\sf{P(150) = 0.00125(506,250,000) + 150 - 3}[/tex]

[tex]\sf{P(150) = 632,812.50 + 150 - 3}[/tex]

[tex]\sf{P(150) = 632,962.50 - 3}[/tex]

[tex]\boxed{\sf{P(150) = 632,959.5}}[/tex]

The answer for that question is:

[tex]\boxed{\purple{\sf{B. \: Php \: 632,959.50}}}[/tex]

#CarryOnLearning