👤

apply the laws of rational exponents in simplifying the expression.

Sagot :

Answer:

When we use rational exponents, we can apply the properties of exponents to simplify expressions. ... The denominator of the rational exponent is the index of the radical. There will be times when working with expressions will be easier if you use rational exponents and times when it will be easier if you use radicals.

Answer:

1. [tex]\frac{m^{\frac{3}{5} } }{n^{\frac{1}{2} } }[/tex]

2.[tex]\frac{q}{p^{\frac{1}{4} } }[/tex]

3.[tex]5x^{\frac{1}{2} }[/tex]

4.[tex]\frac{m^{2}y^{3} }{2^{\frac{1}{4} } p^{5} }[/tex]

5.[tex]\frac{m^{2}y^{3} }{2^{\frac{1}{4} } p^{5} }[/tex]

6.[tex]\frac{m^{3}n }{2^{\frac{2}{3} } }[/tex]

7.[tex]x^{6} y^{3}[/tex]

8.[tex]2^{\frac{5}{6} } a^{\frac{5}{3} }[/tex]

9.[tex]2x^{2}[/tex]

10.[tex]\frac{3q^{5}r^{\frac{1}{2} } }{2}[/tex]

I'M SURE OF MY ANSWER, IF I'M WRONG CORRECT ME. :)

Ps. mapapadali mong malalaman kung papacheckan mo to sa teacher if mali then i'm wrong diba.