👤

the area of a rectangle is at least 560 square inches.the length is 3 inches more than the twice the width.if W represents the width of the rectangle,which of the following expression represents its length


a 2w+3 b.2w-3 c.3w+2 d.3w-2​


Sagot :

Answer:

Dimension:

Width: x

Length: 2x + 3

Area: 560 sq. inches

Area = Length x Width

Equation:

(2x + 3) (x) = 560

2x² + 3x = 560

Transform to quadratic equation, ax² + bx + c = 0:

2x² + 3x - 560 = 0

Use Quadratic formula to solve for x:

a = 2 b = 3 c = -560

x₁,₂ = \frac{-(3) \frac{+}{-} \sqrt{(3) ^{2}-4(2)(-560) } }{2(2)}

2(2)

−(3)

+

(3)

2

−4(2)(−560)

x₁,₂ = \frac{-3 \frac{+}{-} \sqrt{9+4,480 } }{4}

4

−3

+

9+4,480

x₁,₂ = \frac{-3 \frac{+}{-} \sqrt{4489} }{4}

4

−3

+

4489

x₁ = \frac{-3 +67}{4}

4

−3+67

x₁ = 64/4

x₁ = 16

-------------------

x₂ = \frac{-3 -67}{4}

4

−3−67

x₂ = -70/4 or -35/2

Choose the positive root, x₁ = 16

Substitute 16 for x in dimension:

Width:x = 16 inches

Length: 2x + 3 = 2(16) + 3 = 35 inches

ANSWER: Length is 35 inches and width is 16 inches.

Check:

(35 inches) (16 inches) = 560 sq. inches

560 sq. inches = 560 sq. inches (true)

Step-by-step explanation:

i hope it helps