👤

A varies directly as B and inversely as C. If B=4, C=2, and
A=40, find A if B=15 and e=25.​


Sagot :

COMBINED VARIATION

==============================

Solve:

[tex] \implies \sf \large a = \frac{kb}{c} \\ [/tex]

[tex]\large \tt \red{given} \begin{cases} \sf \: a = 40 \\ \sf \: b = 4 \\ \sf \: c = 2 \end{cases} \\ \\ [/tex]

[tex] \implies \sf \large 40 = \frac{k(4)}{2} \\[/tex]

[tex] \implies \sf \large 40 = k(2)[/tex]

[tex] \implies \sf \large \frac{40}{2} = \frac{k( \cancel2)}{ \cancel2} \\ [/tex]

[tex] \implies \sf \large \therefore \: {k = 20}[/tex]

[tex] \: [/tex]

[tex]\large \tt \red{given(2)} \begin{cases} \sf \: k = 20 \\ \sf \: b = 15 \\ \sf \: c = 25 \end{cases} \\ \\ [/tex]

[tex] \implies \sf \large a = \frac{20(15)}{25} \\ [/tex]

[tex]\implies \sf \large a = \frac{300}{25} \\ [/tex]

[tex]\implies \sf \large \therefore \: \orange{a = 12 } [/tex]

[tex] \: [/tex]

Final Answer:

[tex] \sf \huge \orange{a = 12}[/tex]

==============================

#CarryOnLearning

(ノ^_^)ノ