👤

[tex]9.66^x = 28.98^y = 9[/tex] find the value of 1/x - 1/y?

Sagot :

Answer:

1/2

Step-by-step explanation:

[tex]\rm 9.66^x = 28.98^y = 9[/tex]

[tex]\therefore \rm x = \frac{\ln9}{\ln9.66} , \ y = \frac{\ln9}{\ln28.98}[/tex]

Substitute the value of x and y in expression 1/y - 1/x

[tex]\rm \frac{1}{\frac{\ln9}{\ln28.98} } -\frac{1}{\frac{\ln9}{\ln9.66} }[/tex]

[tex]\implies \rm \frac{\ln28.98 - \ln9.66}{\ln9}[/tex]

[tex]\implies \rm \frac{\ln28.98}{\frac{\ln9.66}{\ln9} }[/tex]

[tex]\implies \frac{\ln3}{\ln9}[/tex]

[tex]\implies \frac{\ln3^1}{\ln3^2}[/tex]

[tex]\implies \boxed{\rm \frac{1}{2} }[/tex]

#CarryOnLearning