Sagot :
Answer:
1/2
Step-by-step explanation:
[tex]\rm 9.66^x = 28.98^y = 9[/tex]
[tex]\therefore \rm x = \frac{\ln9}{\ln9.66} , \ y = \frac{\ln9}{\ln28.98}[/tex]
Substitute the value of x and y in expression 1/y - 1/x
[tex]\rm \frac{1}{\frac{\ln9}{\ln28.98} } -\frac{1}{\frac{\ln9}{\ln9.66} }[/tex]
[tex]\implies \rm \frac{\ln28.98 - \ln9.66}{\ln9}[/tex]
[tex]\implies \rm \frac{\ln28.98}{\frac{\ln9.66}{\ln9} }[/tex]
[tex]\implies \frac{\ln3}{\ln9}[/tex]
[tex]\implies \frac{\ln3^1}{\ln3^2}[/tex]
[tex]\implies \boxed{\rm \frac{1}{2} }[/tex]
#CarryOnLearning