👤

"VARIATION"

20. When x = 7, y = 9. Find the value of y when x = 3. *


A. 14

B. 21

C. 42


21. Solve each of the following joint variation problems. a varies jointly with b and c. If when b = 2 and c = 6 when a = 4, find the constant of proportionality. *


A. 1/3

B. 1/4

C. 1/6


22. Given the values in the above problem, find the value of c when a = 12 and b = 6. *


A. 4

B. 5

C. 6


23. x varies jointly with y and z. If when x = 5 and y = 7 when z = 9, find the value of x when y = 28 when z = 36. 

A. 63

B. 72

C. 80


24. f varies directly with g and inversely with h. If when f = 3 and g = 4 when h = 5, find the value of the constant of proportionality. *


A. 12/5

B. 15/4

C. 20/3


25.Using the relationship from the problem above, if f were 6 and h were 10, what would be the value of g? *


A. 10

B. 16

C. 20​


Sagot :

Answer:

RATIO

==============================

1. 16 to 4

\implies \large \sf16 \: : \: 4⟹16:4

\implies \large \sf16 \div 4 \: : \: 4 \div 4⟹16÷4:4÷4

\implies \large \sf \orange{4 \: : \: 1}⟹4:1

\:

2. 6 to 15

\implies \large \sf6 \: : \: 15⟹6:15

\implies \large \sf6 \div 3 \: : \: 15 \div 3⟹6÷3:15÷3

\implies \large \sf \orange{2\: : \: 5}⟹2:5

\:

3. 30 : 5

\implies \large \sf30 \: : \: 5⟹30:5

\implies \large \sf30\div 5 \: : \: 5 \div 5⟹30÷5:5÷5

\implies \large \sf \orange{6\: : \: 1}⟹6:1

\:

4. 12/16

\implies \large \sf {12\: : \: 16}⟹12:16

\implies \large \sf {12 \div 4\: : \: 16 \div 4}⟹12÷4:16÷4

\implies \large \sf \orange{3\: : \: 4}⟹3:4

\:

5. 3/8

\implies \large \sf {3\: : \: 8}⟹3:8

\implies \large \sf {3 \div 1\: : \: 8 \div 1}⟹3÷1:8÷1

\implies \large \sf \orange{3\: : \: 8}⟹3:8

==============================

#CarryOnLearning

(ノ^_^)ノ

Step-by-step explanation:

easy