Sagot :
Answer:
[tex]\rm \frac{\log69}{\log28,980}[/tex]
Step-by-step explanation:
[tex]\rm 999^x = 68,931^y = 28,980[/tex]
[tex]\therefore \rm x = \frac{\log 28,980}{\log999},\ y =\frac{\log28,980}{\log68,931}[/tex]
[tex]\implies\rm \frac{1}{y} -\frac{1}{x} = \frac{1}{\frac{\log28,980}{\log68,931} } - \frac{1}{\frac{\log28,980}{\log999} }[/tex]
[tex]\implies \rm \frac{1}{y} - \frac{1}{x} = \frac{\log68,931}{\log28,980} - \frac{\log999}{\log28,980}[/tex]
[tex]\implies \rm \frac{1}{y} - \frac{1}{x} = \frac{\frac{\log68,931}{\log999} }{\log28,980}[/tex]
[tex]\implies \boxed{\rm \frac{1}{y} - \frac{1}{x} = \frac{\log69}{\log28,980}}[/tex]
#CarryOnLearning