👤

Jessa wants to have a swimming pool on their backyard.An engineer suggested that she should have the dimensions of the swimming pool (x+5) meter by (x+1) meter by x meter. The water capacity of the pool is determined by the equation (x) (x+5) (x+1)=42.

with Solution po Ty


Sagot :

Answer:

1 Expand.

{x}^{3}+{x}^{2}+5{x}^{2}+5x=42

x

3

+x

2

+5x

2

+5x=42

2 Simplify {x}^{3}+{x}^{2}+5{x}^{2}+5xx

3

+x

2

+5x

2

+5x to {x}^{3}+6{x}^{2}+5xx

3

+6x

2

+5x.

{x}^{3}+6{x}^{2}+5x=42

x

3

+6x

2

+5x=42

3 Move all terms to one side.

{x}^{3}+6{x}^{2}+5x-42=0

x

3

+6x

2

+5x−42=0

4 Factor {x}^{3}+6{x}^{2}+5x-42x

3

+6x

2

+5x−42 using Polynomial Division.

({x}^{2}+8x+21)(x-2)=0

(x

2

+8x+21)(x−2)=0

5 Solve for xx.

x=2

x=2

6 Use the Quadratic Formula.

1 In general, given a{x}^{2}+bx+c=0ax

2

+bx+c=0, there exists two solutions where:

x=\frac{-b+\sqrt{{b}^{2}-4ac}}{2a},\frac{-b-\sqrt{{b}^{2}-4ac}}{2a}

x=

2a

−b+

b

2

−4ac

,

2a

−b−

b

2

−4ac

2 In this case, a=1a=1, b=8b=8 and c=21c=21.

{x}^{}=\frac{-8+\sqrt{{8}^{2}-4\times 21}}{2},\frac{-8-\sqrt{{8}^{2}-4\times 21}}{2}

x

=

2

−8+

8

2

−4×21

,

2

−8−

8

2

−4×21

3 Simplify.

x=\frac{-8+2\sqrt{5}\imath }{2},\frac{-8-2\sqrt{5}\imath }{2}

x=

2

−8+2

5

,

2

−8−2

5

x=\frac{-8+2\sqrt{5}\imath }{2},\frac{-8-2\sqrt{5}\imath }{2}

x=

2

−8+2

5

,

2

−8−2

5

7 Collect all solutions from the previous steps.

x=2,\frac{-8+2\sqrt{5}\imath }{2},\frac{-8-2\sqrt{5}\imath }{2}

x=2,

2

−8+2

5

,

2

−8−2

5

8 Simplify solutions.

x=2,-4+\sqrt{5}\imath ,-4-\sqrt{5}\imath

x=2,−4+

5

,−4−

5

Step-by-step explanation:

the rectangle there is represent as I

then some number in there is doubled sorry