👤

The series combination of 5.0 F and 20.0 F capacitors is connected in parallel to a 40.0 F capacitor. The equivalent capacitance is ______

a. 3.6 F
b. 44 F
c. 15 F
d. 65 F


Sagot :

The total capacitance is 44 F

[tex]\\[/tex]

Given:

[tex]C_1\:=\:5.0\:F[/tex]

[tex]C_2\:=\:20.0\:F[/tex]

[tex]C_3\:=\:40.0\:F[/tex]

[tex]\\[/tex]

Required:

Total Capacitance [tex]C_T[/tex]

[tex]\\[/tex]

Equation:

Total Capacitance in Series Connection

[tex]\frac{1}{C_T}\:=\:\frac{1}{C_1}\:+\:\frac{1}{C_2}\:+\:\frac{1}{C_3}\:+\:...\:+\:\frac{1}{C_n}[/tex]

[tex]\\[/tex]

Total Capacitance in Parallel Connection

[tex]C_T\:=\:C_1\:+\:C_2\:+\:C_3\:+\:...\:+\:C_n[/tex]

[tex]\\[/tex]

Solution:

Note: Please refer to the photo for the illustration.

Solve for the Total Capacitance of [tex]C_1[/tex] and [tex]C_2[/tex] connected in Series connection

[tex]\frac{1}{C_{T12}}\:=\:\frac{1}{C_1}\:+\:\frac{1}{C_2}\:+\:\frac{1}{C_3}\:+\:...\:+\:\frac{1}{C_n}[/tex]

[tex]\frac{1}{C_{T12}}\:=\:\frac{1}{20\:F}\:+\:\frac{1}{5\:F}[/tex]

[tex]\frac{1}{C_{T12}}\:=\:\frac{1\:+\:4}{20\:F}[/tex]

[tex]\frac{1}{C_{T12}}\:=\:\frac{5}{20\:F}[/tex]

[tex]C_{T12}\:=\:\frac{20\:F}{5}[/tex]

[tex]C_{T12}\:=\:4\:F[/tex]

[tex]\\[/tex]

Solve for the Total Capacitance of [tex]C_{T12}[/tex] and [tex]C_3[/tex] connected in Parallel connection

[tex]C_T\:=\:C_{T12}\:+\:C_3[/tex]

[tex]C_T\:=\:4.0\:F\:+\:40.0\:F[/tex]

[tex]C_T\:=\:44\:F[/tex]

[tex]\\[/tex]

Final Answer:

The total capacitance is 44 F

[tex]\\[/tex]

[tex]\\[/tex]

#CarryOnLearning

View image HannahPanda