👤

2. There are motorcycles and vans in the parking lot. Yuri counted
6 vehicles and 16 wheels in all. How many motorcycles and vans
are there?​


Sagot :

Answer:

No. of Motorcyles is 4, No. of Van is 2

Step-by-step explanation:

x = van, y = motorcycles

e1. 4x + 2y = 16

e2. x + y = 6

then solve ...

WHEELS

==============================

Solve:

  • Let x be the number of motorcycles
  • Let y be the number of vans

[tex]\large \tt \red{given} \begin{cases} \sf \: x + y = 6 \tt \red{ \: \: \: \: \: \: \: \: \: \: (eq.1)} \\ \sf \: 2x + 4y = 16 \: \: \: \tt \red{(eq.2)} \end{cases} \\ \\ [/tex]

Find the the value of x as the substitution. Use the first equation.

[tex] \large \begin{cases} \begin{align} \sf \: x + y &= \sf 6 \\ \sf \: x& = \sf6-y\end{align} \end{cases}[/tex]

Now substitute x as 6 - y. Use the second equation.

[tex] \begin{align}&\large \begin{cases} \begin{align} \sf \: 2x + 4y&= \sf 16 \\ \sf \: 2(6 - y) + 4y& = \sf16 \\ \sf \: 12 - 2y + 4y& = \sf16 \\ \sf \: 12 + 2y& = \sf16 \end{align} \end{cases} \\ & \large \begin{cases} \begin{align} \sf \: 2y& = \sf16 - 12 \\ \sf \: 2y& = \sf4 \\ \sf \: \frac{ \cancel2y}{ \cancel2} & = \sf \frac{4}{2} \\ \sf \orange{ y}& \orange{= \sf2} \end{align} \end{cases} \end{align}[/tex]

Use the first transposed equation, substitute y as 2.

[tex] \large \begin{cases} \begin{align} \sf \: x& = \sf6-y \\ \sf \: x& = \sf6-2 \\ \sf \: \orange{ x}& \orange{ = \sf4}\end{align} \end{cases}[/tex]

[tex] \: [/tex]

Final Answer:

[tex] \large \implies \sf \LARGE \orange{4 \: motorcycles}[/tex]

[tex] \large \implies \sf \LARGE \orange{2 \: vans}[/tex]

==============================

#CarryOnLearning

(ノ^_^)ノ