👤

Use the distance formula and the pythagorean theorem to show that D (2,-2), E (5, 4), F (-4, 1) are vertices of a right triangle.​

Sagot :

SOLUTION

First , we need to get the distance between each point , we can get their distance using the distance formula.

Point D to Point E

  • D = √(x2-x1)²+(y2-y1)²
  • D = √(5-2)²+(4-(-2))²
  • D = √(5-2)²+(4+2)²
  • D = √(3)²+(6)²
  • D = √9-36
  • D = √45 units

Point E to Point F

  • D = √(x2-x1)²+(y2-y1)²
  • D = √(-4-5)²+(1-4)²
  • D = √(-9)²+(-3)²
  • D = √81+9
  • D = √90 units

Point F to Point D

  • D = √(x2-x1)²+(y2-y1)²
  • D = √(-4-2)²+(1-(-2))²
  • D = √(-4-2)²+(1+2)²
  • D = √(-6)²+(3)²
  • D = √36+9
  • D = √45 units

Proving that they forms a right triangle,

We then Use the pythagorean theorem

  • a²+b² = c²

We got that a = √45 , b = √45 , and c = √90

Substituting the value of a , b , and c to the formula of pythagorean.

  • (√45)²+(√45)² = (√90)²
  • 45 + 45 = 90
  • 90 = 90

Hence , Proved that the vertices form a right triangle.

=======================[tex]\overbrace{ \underbrace{ \tt{} \purple{ \: \: Stay \: safe \: and \: God \: bless \: you! \: \: }}}[/tex]