SOLUTION
[tex]\\[/tex]
[tex] \large \tt{given \: \: that} \: \: h = \large \bold{\orange{\frac{3 \sqrt[3]{t} }{2}}}[/tex][tex]\\[/tex]
[tex]\\[/tex]
Height = 2
[tex]2 \:= \frac{3 \sqrt[3]{t} }{2} \\ 2(2) = (\frac{3 \sqrt[3]{t} }{2})2 \\ 4 = {3 \sqrt[3]{t}} \\ (4)^{3} = {(3 \sqrt[3]{t})^{3} } \\ 64 = 27t \\ \boxed{\green{\frac{64}{27}} = t}[/tex]
[tex]\\[/tex]
Height = 2.5
[tex]2.5\:= \frac{3 \sqrt[3]{t} }{2} \\ 2(2.5) = (\frac{3 \sqrt[3]{t} }{2})2 \\ 5 = {3 \sqrt[3]{t}} \\ (5)^{3} = {(3 \sqrt[3]{t})^{3} } \\ 125 = 27t \\ \boxed{\green{\frac{125}{27}} = t}[/tex]
[tex]\\[/tex]
Height = 3
[tex]3\:= \frac{3 \sqrt[3]{t} }{2} \\ 2(3) = (\frac{3 \sqrt[3]{t} }{2})2 \\ 6 = {3 \sqrt[3]{t}} \\ (6)^{3} = {(3 \sqrt[3]{t})^{3} } \\ 216 = 27t \\ \boxed{\green{\frac{216}{27}} = t}[/tex]
[tex]\\[/tex]
ANSWER
[tex]\begin{array}{|c|c|}\hline \tt \bold{height}& \tt \bold{time} \\ \hline \tt {{2} } & \tt {2.37} \\ \hline\ {{2.5}}& \tt 4.63\\ \hline \tt {3} & \tt8 \\ \hline \end{array}[/tex]