👤

1. If y varies inversely as x and y = 3 when x = 4, find y when x = 6.
2. If r varies inversely as s and r= 100 when s = 27, find the value of r when s = 45.
3. If p varies inversely as the square of q and p = 3 when q = 4, find p when q = 16.
4. If y varies inversely as x and y=-2 when x = -8, find x when y= 2.
5. If w varies inversely as y and w = 2 when y= 3, find w when y = 6.
6. If m varies inversely as n and m = 8 when n = 3, find m when n = 12.
7. If y varies inversely as x, and y is 10 when x = 5, find y when x = 7.
8. If a varies inversely as b and a = 12 when b= 8, find a when b = 6.
9. If w varies inversely as x and w is 10 when x = 5 find w when x = 25.
10. If y varies inversely as x and y = 10 when x = 5, find y when x = 15.​


Sagot :

Answer:

1. y = 2

2. r = 60

[tex]3. \: \frac{9}{64} [/tex]

4. y = 8

5. w = 1

6. m = 12

[tex]7. \: \frac{100}{7} \:or \: lowest \: term \: of \: {14} \frac{2}{7} [/tex]

8. a = 16

9. w = 2

[tex]10. \: y = \frac{10}{3} \: or \: lowest \: term \: of \: {3} \frac{1}{3} [/tex]

Step-by-step explanation:

[tex]1. \: y = \frac{k}{x} [/tex]

[tex]3 = \frac{k}{4} [/tex]

3(4) = k

12 = k

[tex]y = \frac{12}{x} [/tex]

[tex]y = \frac{12}{6} [/tex]

y = 2

[tex]2. \: r = \frac{k}{s} [/tex]

[tex]100 = \frac{k}{27} [/tex]

100(27) = k

2700 = k

[tex]r = \frac{2700}{45} [/tex]

r = 60

[tex]3. \: p = \frac{k}{q^{2} } [/tex]

[tex]3 = \frac{k}{ {3}^{2} } [/tex]

[tex]3 = \frac{k}{9} [/tex]

3(9) = k

36 = k

[tex]p = \frac{36}{ {q}^{2} } [/tex]

[tex]p = \frac{36}{ {16}^{2}} [/tex]

[tex]p = \frac{36}{256} [/tex]

[tex]p = \frac{9}{64} [/tex]

[tex]4. \: y = \frac{k}{x} [/tex]

[tex] - 2 = \frac{k}{ - 8} [/tex]

(-2)(-8) = k

16 = k

[tex]y = \frac{16}{x} [/tex]

[tex]y = \frac{16}{2} [/tex]

y = 8

[tex]5. \: w = \frac{k}{y} [/tex]

[tex]2 = \frac{k}{3} [/tex]

2(3) = k

6 = k

[tex]w = \frac{6}{y} [/tex]

[tex]w = \frac{6}{6} [/tex]

w = 1

[tex]6. \: m = \frac{k}{n} [/tex]

[tex]8 = \frac{k}{3} [/tex]

8(3) = k

24 = k

[tex]m = \frac{24}{n} [/tex]

m = 12

[tex]7. \: y = \frac{k}{x} [/tex]

[tex]10 = \frac{k}{10} [/tex]

10(10) = k

100 = k

[tex]y = \frac{100}{x} [/tex]

[tex]y = \frac{100}{7} \: or \: lowest \: term \: of \: 14 \frac{2}{7} [/tex]

[tex]8. \: a = \frac{k}{b} [/tex]

[tex]12 = \frac{k}{8} [/tex]

12(8) = k

96 = k

[tex]a = \frac{96}{b} [/tex]

[tex]a = \frac{96}{6} [/tex]

a = 16

[tex]9. \: w = \frac{k}{x} [/tex]

[tex]10 = \frac{k}{5} [/tex]

10(5) = k

50 = k

[tex]w = \frac{50}{x} [/tex]

[tex]w = \frac{50}{25} [/tex]

w = 2

[tex]10. \: y = \frac{k}{x} [/tex]

[tex]10 = \frac{k}{5} [/tex]

10(5) = k

50 = k

[tex]y = \frac{50}{x} [/tex]

[tex]y = \frac{50}{15} [/tex]

[tex]y = \frac{10}{3} \: or \: lowest \: term \: of \: 3\frac{1}{3} [/tex]

I hope it's help

Please brainliest me