Sagot :
LOGARTIHMS
1. log₂ m⁶n
If logₙ (xy), then logₙ (xy) = logₙ (x) + logₙ (y)
log₂ (m⁶) + log₂ (n)
If logₙ (xᵃ), then logₙ (xᵃ) = alogₙ (x)
log₂ (m⁶) + log₂ (n) = 6log₂ (m) + log₂ (n)
2. log₂ √mn
If logₙ (xy), then logₙ (xy) = logₙ (x) + logₙ (y)
log₂ √m + log₂ √n
Any value in a radical symbol assuming that the root is 2 have always the exponent of ½. So √x = x¹/²
log₂ (m¹/²) + log₂ (n¹/²)
If logₙ (xᵃ), then logₙ (xᵃ) = alogₙ (x)
log₂ m¹/² + log₂ n¹/² = ½log₂ (m) + ½log₂ (n)
3. log₂ √mn / n³
If logₙ (x/y), then logₙ (x/y) = logₙ (x) - logₙ (y)
log₂ (√mn) - log₂ (n³)
Any value in a radical symbol assuming that the root is 2 have always the exponent of ½. So √x = x¹/²
log₂ (m¹/²) + log₂ (n¹/²) - log₂ (n³)
If logₙ (xᵃ), then logₙ (xᵃ) = alogₙ (x)
log₂ (m¹/²) + log₂ (n¹/²) - log₂ (n³) = ⅓log₂ (m) + ½log₂ (n) - 3log₂ (n)
4. log₂ (m/n)⁴
If log (x/y)ᵃ then log (x/y)ᵃ = log (xᵃ/yᵃ)
log₂ (m⁴/n⁴)
If logₙ (x/y), then logₙ (x/y) = logₙ (x) - logₙ (y)
log₂ (m⁴) - log₂ (n⁴)
If logₙ (xᵃ), then logₙ (xᵃ) = alogₙ (x)
log₂ (m⁴) - log₂ (n⁴) = 4log₂ (m) - 4log₂ (n)
[tex] \: [/tex]
#CarryOnLearning