Sagot :
[tex] \large \mathcal\colorbox{red}{SOLUTION:} [/tex]
[tex] \begin{array}{l} \textsf{Let }x\textsf{ be the length of string used for each light} \\ \textsf{ball.} \\ \\ \textsf{Refer to the diagram drawn.} \\ \\ \textsf{By Tangent - Secant Theorem,} \\ \\ \begin{aligned} \qquad CT^2 &= CA(CB) \\ CT^2 &= CA(CA + AB) \\ 30^2 &= x(x + 12) \\ 900 &= x(x + 12) \\ 900 &= x^2 + 12x \end{aligned} \\ \\ \textsf{By completing the square,} \\ \\ \begin{aligned} x^2 + 12x + 36 &= 900 + 36 \\ (x + 6)^2 &= 936 \\ x + 6 &= \pm \sqrt{936} \\ x + 6 &= \pm \sqrt{36(26)} \\ \implies x &= -6 \pm 6\sqrt{26}\end{aligned} \\ \\ \textsf{We only need the positive value of }x, \textsf{so }\\ x = (-6 + 6\sqrt{26})\textsf{ cm} \\ \\ \textsf{There are 40 pairs of lights balls or a total of }\\ 40(2) = 80\textsf{ light balls.} \\ \\ \textsf{Total length of string to be used :} \\ \implies 80x = 80(-6 + 6\sqrt{26}) \\ \implies 80x \approx \boxed{1967.53\textsf{ cm or }19.675\textsf{ meters}} \end{array} [/tex]
[tex] \mathfrak \colorbox{blue}{\#CarryOnLearning} [/tex]
![View image EngrJohann](https://ph-static.z-dn.net/files/d26/bfa29316fe43967e0b37f9eaaca3adc7.jpg)