Sagot :
[tex] \large\underline \bold{{SOLUTION}}[/tex]
[tex]\longmapsto\sf{Area = \frac{d_1×d_2}{2}}[/tex]
Substitute the given diagonals:
[tex]\longmapsto\sf{Area = \frac{18×10}{2}}[/tex]
[tex]\longmapsto\sf{Area = \frac{180}{2}}[/tex]
[tex]\longmapsto\boxed{\sf{Area = 90}}[/tex]
[tex] \large\underline{ \bold{ANSWER}}[/tex]
- The Area of the Rhombus is 90cm²
[tex] \large \bold{PROBLEM:}[/tex]
[tex]\bold{The \:diagonals \:of \:a \:rhombus} \\ \bold{ have\: lengths\: 18 cm \:and \:10 cm,} \\ \bold{what \:is \:the\: area \:of \:one \:of \:the} \\ \bold{ triangles \:formed \:by \:these \:diagonals?}[/tex]
[tex] \large \bold{FORMULA:}[/tex]
[tex] \large \bold{\Delta\:Area= \frac{d_1 \times d_2}{2} }[/tex]
[tex] \large \bold{WHERE:}[/tex]
[tex] \bold{D_1=Length \: of \: diagonal\:1} \\ \bold{D_2=Length \: of \: diagonal\:2}[/tex]
[tex] \large \bold{SOLUTION:}[/tex]
[tex] \large \bold{\Delta\:Area= \frac{18 \times 10}{2} }[/tex]
[tex] \bold{\Delta\: Area= \frac{180}{2} }[/tex]
[tex] \bold{\Delta\: Area= 90 }[/tex]
[tex] \large \bold{Hence\: ∆ \:Area \: of \: Rhombus \: is \: 90cm {}^{2} }[/tex]
[tex]\large\bold{\Delta\:Area=90cm²}[/tex]
[tex]\purple{\begin{gathered} \gamma \\ \huge \boxed{ \ddot \smile}\end{gathered}} \: \pink{\begin{gathered} \gamma \\ \huge \boxed{ \ddot \smile}\end{gathered}} \: \red{\begin{gathered} \gamma \\ \huge \boxed{ \ddot \smile}\end{gathered}} \: \orange{\begin{gathered} \gamma \\ \huge \boxed{ \ddot \smile}\end{gathered}}[/tex]
[tex] \large \color{indigo}{ \bold{Carry\: On\: Latex}}[/tex]