👤

A bubble of helium gas has a volume of 0.500 mL near the bottom of a large aquarium where the pressure is 1.20 atm and the temperature is 10 degrees Celsius. Determine the bubble's volume upon rising the nearthe top where the pressure is 0.95 atm and 14 degrees Celsius. (Combined Gas law)

Sagot :

Given:

[tex]P_{1} = \text{1.20 atm}[/tex]

[tex]T_{1} = \text{10°C + 273 = 283 K}[/tex]

[tex]V_{1} = \text{0.500 mL}[/tex]

[tex]P_{2} = \text{0.95 atm}[/tex]

[tex]T_{2} = \text{14°C + 273 = 287 K}[/tex]

Unknown:

[tex]V_{2}[/tex]

Solution:

[tex]\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}}[/tex]

[tex]V_{2} = V_{1} × \frac{P_{1}}{P_{2}} × \frac{T_{2}}{T_{1}}[/tex]

[tex]V_{2} = \text{0.500 mL} × \frac{\text{1.20 atm}}{\text{0.95 atm}} × \frac{\text{287 K}}{\text{283 K}}[/tex]

[tex]\boxed{V_{2} = \text{0.641 mL}}[/tex]

[tex]\\[/tex]

#CarryOnLearning