Sagot :
Find the sum of interior angles of a polygon with 143 sides
[tex]\bold {solution:}[/tex]
We will use the formula [tex] \scriptsize{\boxed{\tt sum=(n–2)×180°}}[/tex] where n is the number of sides.
[tex] \begin{array}{l} \large \tt sum = (n - 2) \times 180° \\ \\ \large \tt sum = (143 -2) \times 180° \\ \\ \large \tt sum = 141 \times 180° \\ \\ \large \red{ \boxed{\tt sum = 25 \: 380°}}\end{array}[/tex]
∴ The sum of the interior angles of a polygon with 143 sides is 25 380°
[tex]\\[/tex]
#CarryOnLearning
[tex]\footnotesize\textsf{Input Data :}\\\textsf{Number of sides n = 143}\\\textsf{Side length l = 180}\\\\\textsf{Solution}\\\sf \: Interior Angle =\frac{(n-2)(\times 180)}{n}\\\sf \: \frac{(143-2)\times 180}{143}\\\\\sf \: \frac{143\times 180}{143}\\\\\sf \:\frac{25380}{143}\\\\ \boxed{\textsf{Interior Angle=177.48251748252}}\\\\ \textsf{Solution} \\ \sf{Sum \: of \: Interior \: Angle(n-2) \times 180}\\\sf \: (143-2) \times 180\\\sf \: (141)\times 180\\\\ \boxed{\textsf{ Sum of Interior Angle = 25,380}}\\\\\textsf{Solution} \\ \sf \: Exterior \: Angle =\frac{360}{n} \\ \\\sf\: \frac{360}{143}\\\\ \boxed{\textsf{Exterior Angle = 2.5175}} \\ \\ \textsf{Hence the Sum of interior Angle of polygon is \boxed{ \sf25,380}}[/tex]