👤

if z varies directly as x and y, and z = 90 when x = 3 and y = 6. What is z when x = 4 and y = 8?​

Sagot :

[tex]\quad[/tex]JOINT VARIATION

[tex]\qquad[/tex]z varies directly as x and y

[tex]\\[/tex]

[tex]\bold {EQUATION:}[/tex][tex]\boxed{\tt z=kxy}[/tex] where k is the constant of the variation.

[tex]\bold {GIVEN:}[/tex]

  • z = 90 when x =3 and y = 6

[tex]\bold {UNKNOWN:}[/tex]

  • constant of the variation k
  • z when x =4 and y = 8

[tex]\bold {SOLUTION:}[/tex]

First, we will find the value of k,

[tex] \begin{array}{c} \large\tt z = kxy \\ \\ \large \tt 90 = k(3)(6) \\ \\ \large \tt 90 = 18k \\ \\ \Large \tt \frac{90}{18} = \frac{18k}{18} \\ \\ \large \tt \boxed{ \tt k = 5} \end{array}[/tex]

Now, we will substitute the value of k to find z when x = 4 and y = 8.

[tex] \begin{array}{l} \large \tt z = kxy \\ \\ \large \tt z = (5)(4)(8) \\ \\ \large \red{ \boxed{ \tt z = 160}}\end{array}[/tex]

[tex]\\[/tex]

[tex]\therefore\boxed{\textsf{z = 160 when x = 4 and y = 8.}}[/tex]

[tex]\\ \\[/tex]

#CarryOnLearning