👤

what is the nth term of the sequence -3,-2,-1,0​

Sagot :

Answer:

Linear recurrences are solved with their characteristic equation: one searches exponential solutions.

Step-by-step explanation:

I think that is not correct

PROBLEM:

What is the nth term of the sequence -3, -2, -1, 0?

SOLUTION:

[tex]\blue {\overline{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\: }}[/tex]

• We can find the nth term or what we call the rule for the given sequence using the formula [tex] \tt a_n=a_1+(n-1)d[/tex] since the given sequence is an arithmetic one.

• First, we need to identify the value of the first term and the common difference. The value of the first term is -3. The common difference can be obtained when you subtract a term by its preceding term.

[tex] 0 - ( - 1) = 1[/tex]

[tex] - 1 - ( - 2) = 1[/tex]

[tex] - 2 - ( - 3) = 1[/tex]

> Thus, the common difference is 1.

[tex]\blue {\overline{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\: }}[/tex]

• Using the formula, we'll have:

[tex] \large \begin{array}{l}\tt a_n=a_1+(n-1)d \\ \tt a_n= - 3+(n-1)1 \\ \tt a_n= - 3 + n - 1 \\ \tt a_n=n - 4\end{array}[/tex]

ANSWER:

The nth term for the given arithmetic sequence is [tex] \tt n -4.[/tex]