👤

What is the surface area of the square pyramid with the edge of the base of 4cm and a height of the triangle of 8cm?​

Sagot :

[tex]\large \: \rm \: {\underline{\textcolor{pink}{⚘QUESTION⚘}}}[/tex]

What is the surface area of the square pyramid with the edge of the base of 4cm and a height of the triangle of 8cm?

[tex]\large{\underline{\textcolor{green}{\sf{ANSWER}}}}[/tex]

[tex]\boxed{\begin{array}{l} \sf The \: surface \: area \: is \: \boxed{\sf SA= 8c {m}^{2} } \: days \\ \\ \sf \: solution : \end{array}}[/tex]

[tex]\sf \: SA = {b}^{2} + 4( \frac{bxs}{2} ) \\ \sf \: = (4cm) + 4 \: {\underline{(4cm \: \times 8)}} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 2[/tex]

[tex]\sf \: 16c {m}^{2} \: + 4 \: (16c {m}^{2} ) \\ \sf \: = 16c {m}^{2} + 64c {m}^{2} [/tex]

[tex]\sf \: 4 \times 2 = 8 + 4 + 4 = 16 \\ \sf \: or \\ \sf \: {\boxed{4 \times 2 = 8 \times 2 = 16}} \\ \\ \boxed{\begin{array}{l} \sf 4 \times 16 = 64 \\ \\ 64 + 16 = \: \sf \: 80c{m}^{2}\end{array}}[/tex]

⚘P1ggy⚘

⚘Bab0y⚘