👤

Learning Task 2
1.
The lengths of the two sides of 30° -60° - 90° Right Triangle are 4 inches and 413 inches; find the length of the
hypotenuse and the six trigonometric ratios.
sin 30°=-
cos 30º = -
tan 30º =-
CSC30º =- sec 30º =- cot 30º = -
sin 60° = -
cos 60º =
tan 60° = -
CSC 60°=-
sec 60° =-
cot 60º = -
2. Calculate the right triangle's side lengths, whose one angle is 45°, and the hypotenuse is 3/2 inches. Find the
trigonometric ratios.
sin 45º = -
cos 45º -
tan 45º =-
CSC 45º = - sec 45º =
cot 45º = -


YAN YUNG SAGOT KO YUNG NASA PICTURE ​


Learning Task 21The Lengths Of The Two Sides Of 30 60 90 Right Triangle Are 4 Inches And 413 Inches Find The Length Of Thehypotenuse And The Six Trigonometric R class=

Sagot :

Trigonometric Ratios

The six trigonometric ratios are: sine, cosine, tangent, secant, cosecant, and cotangent. Sine and cosecant are inverse ratios. Cosine and secant are inverse ratios. Tangent and cotangent are also inverse ratios. The relationships among these ratios are contained in Trigonometry. Trigonometry refers to the branch of Mathematics that tackles the angles and sides of any roght triangle.

Learning Task 2:

Answers:

1. hypotenuse = 8

  sin 30° = [tex]\frac{4}{8}[/tex] = [tex]\frac{1}{2}[/tex]                               csc 30° = [tex]\frac{8}{4}[/tex] = 2

  cos 30° = [tex]\frac{4\sqrt{3} }{8}[/tex] = [tex]\frac{\sqrt{3} }{2}[/tex]                        sec 30° = [tex]\frac{2}{\sqrt{3} }[/tex] = [tex]\frac{2\sqrt{3} }{3}[/tex]                

  tan 30° = [tex]\frac{4}{4\sqrt{3} }[/tex] = 1[tex]\sqrt{3}[/tex]                        cot 30° = [tex]\frac{4\sqrt{3} }{4}[/tex] = [tex]\sqrt{3}[/tex]

2. opposite/adjacent  = 3

sin 45° = [tex]\frac{3}{3\sqrt{2} }[/tex] = 1[tex]\sqrt{2}[/tex]                            csc 45° = [tex]\frac{3\sqrt{2} }{3}[/tex] = [tex]\sqrt{2}[/tex]

cos 45° = [tex]\frac{3}{3\sqrt{2} }[/tex] = 1[tex]\sqrt{2}[/tex]                           sec 45° = [tex]\frac{3\sqrt{2} }{3}[/tex] = [tex]\sqrt{2}[/tex]

tan 45° = [tex]\frac{3}{3}[/tex] = 1                                   cot 45° = [tex]\frac{3}{3}[/tex] = 1

Solutions:

1. Given: opposite side - 4 inches

              adjacent side - 4[tex]\sqrt{3}[/tex] inches

              hypotenuse - ?

Solutions: hypotenuse² = opposite² + adjacent²

                 hypotenuse² = (4 inches)² + (4[tex]\sqrt{3}[/tex] inches)²

                 hypotenuse² = 16 + 16(3)

                 hypotenuse² = 16 + 48

                 hypotenuse² = 64

                 [tex]\sqrt{hypotenuse^2}[/tex] = [tex]\sqrt{64}[/tex]

                  hypotenuse = 8

then,

sin 30° = [tex]\frac{4}{8}[/tex] = [tex]\frac{1}{2}[/tex]                               csc 30° = [tex]\frac{8}{4}[/tex] = 2

cos 30° = [tex]\frac{4\sqrt{3} }{8}[/tex] = [tex]\frac{\sqrt{3} }{2}[/tex]                        sec 30° = [tex]\frac{2}{\sqrt{3} }[/tex] = [tex]\frac{2\sqrt{3} }{3}[/tex]                

tan 30° = [tex]\frac{4}{4\sqrt{3} }[/tex] = 1[tex]\sqrt{3}[/tex]                        cot 30° = [tex]\frac{4\sqrt{3} }{4}[/tex] = [tex]\sqrt{3}[/tex]

2. Given: opposite side - ?

               adjacent side - ?

               hypotenuse side - 3[tex]\sqrt{2}[/tex]

               opposite side = adjacent side

Solutions: hypotenuse² = opposite² + adjacent²

                 opposite² = hypotenuse² - adjacent²

                 opposite² = (3[tex]\sqrt{2}[/tex])² - opposite² ( since opposite = adjacent)

                 opposite² = 9(2) - opposite²

                 opposite² + opposite² = 18

                 2 opposite² = 18

                        2               2

                 opposite² = 9

                 [tex]\sqrt{opposite^2}[/tex] = [tex]\sqrt{9}[/tex]

                 opposite = 3

                 adjacent = 3 (since opposite and adjacent sides are equal)

then,

sin 45° = [tex]\frac{3}{3\sqrt{2} }[/tex] = 1[tex]\sqrt{2}[/tex]                            csc 45° = [tex]\frac{3\sqrt{2} }{3}[/tex] = [tex]\sqrt{2}[/tex]

cos 45° = [tex]\frac{3}{3\sqrt{2} }[/tex] = 1[tex]\sqrt{2}[/tex]                           sec 45° = [tex]\frac{3\sqrt{2} }{3}[/tex] = [tex]\sqrt{2}[/tex]

tan 45° = [tex]\frac{3}{3}[/tex] = 1                                   cot 45° = [tex]\frac{3}{3}[/tex] = 1

What are the six trigonometric ratios: https://brainly.ph/question/527509

#BrainlyEveryday