👤

given ∆ABC ≈ ∆XYZ, solve for the angles and sides of ∆XYZ​

Sagot :

Answer:

Step-by-step explanation:

∠X = 50°, ∠Y = 74°, ∠Z = 56°, XY = 24 cm, YZ = 22 cm, XZ = 28 cm

v = 22.91 cm, w = 25°, x = 25°, y = 65°, z = 10 cm

Given: ΔART ≅ ΔHOP

illustration is on the pic

∠H = 53° and ∠O = 54°

AR = HO and HP = AT

x = 3

AT

Solutions:

1. Given: ΔABC ≅ ΔXYZ

  Then, ∠A ≅ ∠X = 50°            AB ≅ XY = 24 cm

             ∠B ≅ ∠Y = 74°           BC ≅ YZ = 22 cm

             ∠C ≅ ∠Z = 56°           AC ≅ XZ = 28 cm

2. Given: ΔJPO ≅ ΔSMR

  Then, ∠J ≅ ∠S = 65° since y represents ∠J then y = 65°

            ∠P ≅ ∠M = 90° since they are right angles

            ∠O ≅ ∠R = 25° since w represents ∠R then w = 25° and x represents ∠O then x = 25°

            JP ≅ SM = 10 cm since z represents JP then z = 10 cm

            JO ≅ SR = 25 cm since v represents SR then v = 25 cm

Given: ΔART ≅ ΔHOP, m∠R = 54°, m∠T = 73°, HO = 15 cm, AT  = 10 cm

1. see the pic on the attachment

2. ∠H = 53° and ∠O = 54° since ∠H ≅ ∠A and ∠O ≅ ∠R

3. AR = HO and HP = AT since AR ≅ HO and HP ≅ AT

4. OP ≅ RT

Then, OP = RT

11x - 13 = 20

11x - 13 + 13 = 20 + 13

11x = 33

=

x = 3

5. AT since AR = 15 cm and RT = 20 cm

yun lng sana makatulong (: