👤

given the quadratic functions and transform them into the form ​

Sagot :

Answer:

TRANSFORMING THE GIVEN INTO THE VERTEX FORM

Sa bahaging ito, ay gumagamit tayo ng Completing the Square Method upang makabuo tayo ng Vertex Form of Quadratic Function.

Solution

1. \purple{\boxed{y = x^2 - 2x - 3 }}

y=x

2

−2x−3

Factor out a.

\purple{\boxed{y = (x^2 - 2x) - 3 }}

y=(x

2

−2x)−3

\purple{\boxed{y = [(x^2 - 2x) +(\frac{-2}{2})^2] - 3 }}

y=[(x

2

−2x)+(

2

−2

)

2

]−3

\purple{\boxed{y = (x^2 - 2x + 1) - 3 }}

y=(x

2

−2x+1)−3

Factor out natin yung nasa loob ng parenthesis.

\purple{\boxed{y = (x - 1)^2 - 3 - 1 }}

y=(x−1)

2

−3−1

\purple{\boxed{y = (x - 1)^2 - 4}}

y=(x−1)

2

−4

Answer of Given (x² - 2x - 3)

\purple{\boxed{y = (x - 1)^2 - 4}}

y=(x−1)

2

−4

ang vertex form ng given na ito.

2. \purple{\boxed{y = -x^2 + 4x - 1 }}

y=−x

2

+4x−1

Factor out a.

\purple{\boxed{y = -[x^2 - 4x (\frac{-4}{2}^2)] - 1 - (\frac{-4}{2}^2)}}

y=−[x

2

−4x(

2

−4

2

)]−1−(

2

−4

2

)

Factor out yung nasa loob ng parenthesis at isimplify.

\purple{\boxed{y = -(x^2 - 4x + 4) - 1 - (-4)}}

y=−(x

2

−4x+4)−1−(−4)

\purple{\boxed{y = -(x - 2)^2 - 1 + 4}}

y=−(x−2)

2

−1+4

\purple{\boxed{y = -(x - 2)^2 + 3}}

y=−(x−2)

2

+3

yan lodi cakess

Answer:

whree asaan yung tanong po