👤

What is the range of f-¹(x)=√x-1

Sagot :

Answer

The domain of the given function  

f ( x )  is the set of input values for which  f ( x )  is real and defined.

Point to note:

[tex]\sqrt f{x} = f x\geq 0[/tex]

Solve for  ( x − 1 )  ≥ 0  to obtain  x  ≥ 1 .

Hence,

Domain: [tex]{x} \geq 1[/tex]

Interval Notation: [tex]1,[/tex]∞

Step 2:

Range:

Range is the set of values of the dependent variable used in the function  f ( x )  for which  f( x ) is defined.

Hence,

Range:  f( x)  ≥ 0

Range:  f ( x )  ≥ 0 Interval Notation:  [ 0 , ∞ )

Step3:

Additional note:

The function  y = f ( x ) = √ x− 1  has no asymptotes. Create a data table using values for  x  and corresponding values for  y :

Observe that  Z e r o  and  Negative values  of x  make the function  f ( x )

undefined  at those points.

Graph  f ( x ) =√ x − 1  to verify the results obtained:

Answer is [tex]y=\sqrt{x} -1[/tex]

View image SharkRave