👤

How did you write each quadratic equation in standard form?

quadratic equations:
1. 3x – 2x² = 7
2. 5 – 2x² = 6x
3. (x + 7) (x – 7) = -3x
4. (x – 4)² + 8 = 0​


Sagot :

1. 2x² + 3x - 7 = 0

Solution:

3x - 2x² = 7

3x - 2x² - 7 = 0

2x² + 3x - 7 = 0

2. 2x² - 6x + 5 = 0

Solution:

5 - 2x² = 6x

5 - 2x² - 6x = 0

2x² - 6x + 5 = 0

3. x² + 3x - 7 = 0

Solution:

(x + 7)(x - 7) = -3x

x² + 3x - 7 = 0

4. x² - 8x + 8 = 0

Solution:

(x - 4)² + 8 = 0

x² - 8x + 8 = 0

#CarryOnLearning

✏️QUADRATIC

==============================

» How did you write each quadratic equation in standard form?

"We can write the quadratic equation equation in a standard form of ax² + bx + c = 0"

Quadratic Equations:

#1: 3x - 2x² = 7

  • [tex] \text-2x^2 + 3x - 7 = 0 [/tex]

  • [tex] \underline{\boxed{\tt \purple{2x^2 - 3x + 7 = 0}}} [/tex]

[tex] \: [/tex]

#2: 5 - 2x² = 6x

  • [tex] \text-2x^2 - 6x + 5 = 0 [/tex]

  • [tex] \underline{\boxed{\tt \purple{2x^2 + 6x - 5 = 0}}} [/tex]

[tex] \: [/tex]

#3: (x + 7)(x - 7) = -3x

  • [tex] x^2 - 49 = \text-3x [/tex]

  • [tex] \underline{\boxed{\tt \purple{x^2 + 3x - 49 = 0}}} [/tex]

[tex] \: [/tex]

#4: (x - 4)² + 8 = 0

  • [tex] x^2 - 8x + 16 + 8 = 0 [/tex]

  • [tex] \underline{\boxed{\tt \purple{x^2 - 8x + 24 = 0}}} [/tex]

==============================

#CarryOnLearning

(ノ^_^)ノ