👤

The area of rectangular card board is (25a^4 – b^2)cm^2 . If its length is 5a^2 – b , what is the width ?

Sagot :

Answer: 25a^6cm^25 - a^2b^2cm^25 - b

  • STEP  1 : Equation at the end of step 1

 ((((5^2a^4 -  b^2) • c) • m^25) • a^2) -  b

  • STEP  2 : Trying to factor as a Difference of Squares:

2.1      Factoring:  25a^4-b^2  

Theory : A difference of two perfect squares,  A^2 - B^2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =

        A2 - AB + BA - B2 =

        A2 - AB + AB - B2 =

        A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check :  25  is the square of  5  

Check :  a4  is the square of  a2  

Check :  b2  is the square of  b1  

Factorization is :       (5a^2 + b)  •  (5a^2 - b)  

  • Trying to factor as a Difference of Squares:

2.2      Factoring:  5a^2 - b  

Check :  5  is not a square !!

Ruling : Binomial can not be factored as the

difference of two perfect squares

  • Equation at the end of step  2 :

((c•(5a^2+b)•(5a^2-b)•m^25)•a^2)-b

  • STEP  3 : Equation at the end of step 3

 (cm^25 • (5a^2 + b) • (5a^2 - b) • a^2) -  b

  • STEP  4: Equation at the end of step 4

 a^2cm^25 • (5a^2 + b) • (5a^2 - b) -  b

  • STEP  5 : Trying to factor a multi variable polynomial

5.1    Factoring    25a^6cm^25 - a^2b^2cm^25 - b  

Try to factor this multi-variable trinomial using trial and error  

 

Final result :

 25a^6cm^25 - a^2b^2cm^25 - b

Step-by-step explanation:

Hope it helps out!