👤

x²-5x+6=0

a.-3,2
b.-1,6
c.1,-6
d.3,2​


Sagot :

Answer:

D

Step-by-step explanation:

How to solve your problem

Topics: Algebra, Quadratic Equation

2

5

+

6

=

0

x^{2}-5x+6=0

x2−5x+6=0

Quadratic formula

Factor

1

Use the quadratic formula

=

±

2

4

2

x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}

x=2a−b±b2−4ac

Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.

2

5

+

6

=

0

x^{2}-5x+6=0

x2−5x+6=0

=

1

a={\color{#c92786}{1}}

a=1

=

5

b={\color{#e8710a}{-5}}

b=−5

=

6

c={\color{#129eaf}{6}}

c=6

=

(

5

)

±

(

5

)

2

4

1

6

2

1

x=\frac{-({\color{#e8710a}{-5}}) \pm \sqrt{({\color{#e8710a}{-5}})^{2}-4 \cdot {\color{#c92786}{1}} \cdot {\color{#129eaf}{6}}}}{2 \cdot {\color{#c92786}{1}}}

x=2⋅1−(−5)±(−5)2−4⋅1⋅6

2

Simplify

Evaluate the exponent

Multiply the numbers

Subtract the numbers

Evaluate the square root

Multiply the numbers

=

5

±

1

2

x=\frac{5 \pm 1}{2}

x=25±1

3

Separate the equations

To solve for the unknown variable, separate into two equations: one with a plus and the other with a minus.

=

5

+

1

2

x=\frac{5+1}{2}

x=25+1

=

5

1

2

x=\frac{5-1}{2}

x=25−1

4

Solve

Rearrange and isolate the variable to find each solution

=

3

x=3

x=3

=

2

x=2

x=2

Solution

=

3

=

2