👤

m=-3/4,b=-4 Slope Intercept Form And Satandard form​

Sagot :

✏️ Equation of a Line

[tex] {\Large{\overline{\underline{\sf{\hookrightarrow Answer:}}}}} [/tex]

  • Slope-Intercept Form: [tex] \sf y = - \frac{3}{4} x - 4 [/tex]
  • Standard Form: [tex] \sf 3x + 4y = -16 [/tex]

Solution:

We focus first in finding the slope-intercept form of the equation of a line since the slope [tex] \sf m [/tex] and the y-intercept [tex] \sf b [/tex] is given:

[tex] {\large{\boxed{\sf{y = mx + b}}}} [/tex]

  • [tex] \sf{y = (- \frac{3}{4})x + (-4)} [/tex]
  • [tex] {\underline{\green{\sf{y = - \frac{3}{4} x -4}}}} [/tex]

Now convert it to standard form, which is [tex] \sf Ax + By = C [/tex], by moving the [tex] \sf x [/tex] term to the left side of the equation and getting rid of the fraction.

  • [tex] \sf{y = - \frac{3}{4} x -4} [/tex]
  • [tex] \sf{\frac{3}{4}x + y = - 4} [/tex]
  • [tex] \sf{4(\frac{3}{4}x + y) = (- 4)(4)} [/tex]
  • [tex] {\underline{\green{\sf{3x + 4y = -16}}}} [/tex]

[tex]{\: \:}[/tex]

[tex] {\huge{\overline{\sf{Hope\:It\:Helps}}}} [/tex]

#LetsLearn #BeBrainly ✌☺