👤

evaluate the following polynomials in your answer sheet. f(x)=x⁴+5x³-2x+3 find (f(2))²​

Sagot :

[tex]\Large\colorbox{white}{Answer:}[/tex]

Derivative:

[tex] \frac{d}{dx} (3f(2) {}^{2} + { \times }^{4} + {5x}^{3} - 2 \times ) = \\ {4 \times }^{3} + 15 { \times }^{2} - 2 [/tex]

Alfernate form assuming x is real:

[tex]3f(2) {}^{2} + ( \times + 5) { \times }^{3} = f( \times ) + 2 \times \\ [/tex]

Properties as a real function:

ø

ø

Answer:

Answer:

Derivative:

\begin{gathered} \frac{d}{dx} (3f(2) {}^{2} + { \times }^{4} + {5x}^{3} - 2 \times ) = \\ {4 \times }^{3} + 15 { \times }^{2} - 2 \end{gathered}

dx

d

(3f(2)

2

4

+5x

3

−2×)=

3

+15×

2

−2

Alfernate form assuming x is real:

\begin{gathered}3f(2) {}^{2} + ( \times + 5) { \times }^{3} = f( \times ) + 2 \times \\ \end{gathered}

3f(2)

2

+(×+5)×

3

=f(×)+2×

Properties as a real function:

ø

ø

Go Training: Other Questions