Sagot :
Answer:
[tex]x = - 1 + \sqrt{51} [/tex]
[tex]x = - 1 - \sqrt{51} [/tex]
Step-by-step explanation:
[tex] {2x}^{2} + 4x = 100[/tex]
[tex] {2x}^{2} + 4x - 100 = 0[/tex]
[tex]2 {x}^{2} + 4x - 100 =0 \\ \\ {x}^{2} + 2x - 50 = 0\\ a = 1\\ b = 2\\ c = - 50 \\ x = \frac{ - b + \sqrt[ {} ]{ {b}^{2} - 4ac} }{2a} \\ x = - \frac{ - 2 + \sqrt{( {2}^{2} + - 4(1)( - 50)} }{2(1)} \\ x = \frac{ - 2 + \sqrt{4 + 200} }{2} \\ x = \frac{ - 2 + \sqrt{204} }{2} \\ x = \frac{ - 2 + 2 \sqrt{51} }{2} \\ x = - 1 + \sqrt{51} [/tex]
There are two values of x, but i cant insert both plus and minus sign so.
[tex]x = - 1 + \sqrt{51} [/tex]
[tex]x = - 1 - \sqrt{51} [/tex]