👤

If the common ratio of a sequence is -5 and the first term is 5, what will be its 5th terms??

A.125
b.-625
c.-3125
d.3125​


Sagot :

GEOMETRIC SEQUENCE

[tex] \color{lightblue}{\overline{\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]

If the common ratio of a sequence is -5 and the first term is 5, what will be its 5th terms??

[tex]\bold{GIVEN:}[/tex]

  • [tex]r[/tex] = -5
  • [tex]a_1[/tex] = 5
  • [tex]a_5[/tex] = ?

[tex]\bold{SOLUTION:}[/tex]

In finding the nth term of a geometric sequence, we will use the formula [tex]a_n=a_1r^{n-1}[/tex]

[tex] \begin{array}{l}\tt an = a1 {r}^{n - 1} \\ \\ \tt a5 = (5)( - 5) ^{5 - 1} \\ \\ \tt a5 = (5)( - 5) ^{4} \\ \\ \tt a5 = (5)(625) \\ \\ \red{ \boxed{ \tt a5 = 3125}} \end{array}[/tex]

[tex]\bold{FINAL\:ANSWER:}[/tex]

  • D. 3215

[tex] \color{lightblue}{\overline{\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]

ᜎᜓ