👤

III. FIND THE SLOPE OF THE LINE PASSING THROUGH THE FOLLOWING POINTS.

1. (5,14) AND (19,7)

2. (-10,2) AND (-10,4)

3. (-3,-3) AND (15,13)

4. (-½,⅐) AND (-3/2,2/7)​


Sagot :

Answer:

14,3

Step-by-step explanation:

ok lang PO box kc need to get well

✏️ Slope of a Line

[tex] {\Large{\overline{\underline{\sf{\hookrightarrow Answers:}}}}} [/tex]

  1. [tex] \sf m = - \frac{1}{2} [/tex]
  2. [tex] \sf m [/tex] is undefined.
  3. [tex] \sf m = \frac{8}{9} [/tex]
  4. [tex] \sf m = - \frac{1}{7} [/tex]

Solutions:

Here, we use the formula for calculating the slope of a line.

[tex] {\large{\boxed{\sf{m =\frac{y_2 - y_1}{x_2 - x_1} }}}} [/tex]

1.

Given:

  • [tex] \sf (x_{1},\:y_{1})[/tex] = (5, 14)
  • [tex] \sf (x_{2},\:y_{2})[/tex] = (19, 7)

Solve:

  • [tex] \sf{m = \frac{y_2 - y_1}{x_2 - x_1} } [/tex]

  • [tex] \sf{m = \frac{7 - 14}{19 - 5} } [/tex]

  • [tex] \sf{m = \frac{-7}{14} } [/tex]

  • [tex] {\sf \therefore m = {\boxed{\green{\sf{- \frac{1}{2}}}}}} [/tex]

2.

Given:

  • [tex] \sf (x_{1},\:y_{1})[/tex] = (-10, 2)
  • [tex] \sf (x_{2},\:y_{2})[/tex] = (-10, 4)

Solve:

  • [tex] \sf{m = \frac{y_2 - y_1}{x_2 - x_1} } [/tex]

  • [tex] \sf{m = \frac{4 - 2}{-10 - (-10)} } [/tex]

  • [tex] {\sf \therefore m = {\boxed{\green{\sf{ \frac{2}{0} }}}}} [/tex] »undefined.

3.

Given:

  • [tex] \sf (x_{1},\:y_{1})[/tex] = (-3, -3)
  • [tex] \sf (x_{2},\:y_{2})[/tex] = (15, 13)

Solve:

  • [tex] \sf{m = \frac{y_2 - y_1}{x_2 - x_1} } [/tex]

  • [tex] \sf{m = \frac{13 - (-3)}{15 - (-3)} } [/tex]

  • [tex] \sf{m = \frac{16}{18} } [/tex]

  • [tex] {\sf \therefore m = {\boxed{\green{\sf{\frac{8}{9}}}}}} [/tex]

4.

Given:

  • [tex] \sf (x_{1},\:y_{1})[/tex] = ([tex] \sf - \frac{1}{2} [/tex], [tex] \sf \frac{1}{7} [/tex])
  • [tex] \sf (x_{2},\:y_{2})[/tex] = ( [tex] \sf - \frac{3}{2} [/tex], [tex] \sf \frac{2}{7} [/tex])

Solve:

  • [tex] \sf{m = \frac{y_2 - y_1}{x_2 - x_1} } [/tex]

  • [tex] \sf{m = \frac{\frac{2}{7} - \frac{1}{7}}{- \frac{3}{2} - (-\frac{1}{2}) }} [/tex]

  • [tex] \sf{m = \frac{\frac{1}{7}}{-1} } [/tex]

  • [tex] {\sf \therefore m = {\boxed{\green{\sf{- \frac{1}{7}}}}}} [/tex]

[tex]{\: \:}[/tex]

[tex] {\huge{\overline{\sf{Hope\:It\:Helps}}}} [/tex]

#LetsLearn #BeBrainly ✌☺