Sagot :
Answer:
14,3
Step-by-step explanation:
ok lang PO box kc need to get well
✏️ Slope of a Line
[tex] {\Large{\overline{\underline{\sf{\hookrightarrow Answers:}}}}} [/tex]
- [tex] \sf m = - \frac{1}{2} [/tex]
- [tex] \sf m [/tex] is undefined.
- [tex] \sf m = \frac{8}{9} [/tex]
- [tex] \sf m = - \frac{1}{7} [/tex]
Solutions:
Here, we use the formula for calculating the slope of a line.
[tex] {\large{\boxed{\sf{m =\frac{y_2 - y_1}{x_2 - x_1} }}}} [/tex]
1.
Given:
- [tex] \sf (x_{1},\:y_{1})[/tex] = (5, 14)
- [tex] \sf (x_{2},\:y_{2})[/tex] = (19, 7)
Solve:
- [tex] \sf{m = \frac{y_2 - y_1}{x_2 - x_1} } [/tex]
- [tex] \sf{m = \frac{7 - 14}{19 - 5} } [/tex]
- [tex] \sf{m = \frac{-7}{14} } [/tex]
- [tex] {\sf \therefore m = {\boxed{\green{\sf{- \frac{1}{2}}}}}} [/tex]
2.
Given:
- [tex] \sf (x_{1},\:y_{1})[/tex] = (-10, 2)
- [tex] \sf (x_{2},\:y_{2})[/tex] = (-10, 4)
Solve:
- [tex] \sf{m = \frac{y_2 - y_1}{x_2 - x_1} } [/tex]
- [tex] \sf{m = \frac{4 - 2}{-10 - (-10)} } [/tex]
- [tex] {\sf \therefore m = {\boxed{\green{\sf{ \frac{2}{0} }}}}} [/tex] »undefined.
3.
Given:
- [tex] \sf (x_{1},\:y_{1})[/tex] = (-3, -3)
- [tex] \sf (x_{2},\:y_{2})[/tex] = (15, 13)
Solve:
- [tex] \sf{m = \frac{y_2 - y_1}{x_2 - x_1} } [/tex]
- [tex] \sf{m = \frac{13 - (-3)}{15 - (-3)} } [/tex]
- [tex] \sf{m = \frac{16}{18} } [/tex]
- [tex] {\sf \therefore m = {\boxed{\green{\sf{\frac{8}{9}}}}}} [/tex]
4.
Given:
- [tex] \sf (x_{1},\:y_{1})[/tex] = ([tex] \sf - \frac{1}{2} [/tex], [tex] \sf \frac{1}{7} [/tex])
- [tex] \sf (x_{2},\:y_{2})[/tex] = ( [tex] \sf - \frac{3}{2} [/tex], [tex] \sf \frac{2}{7} [/tex])
Solve:
- [tex] \sf{m = \frac{y_2 - y_1}{x_2 - x_1} } [/tex]
- [tex] \sf{m = \frac{\frac{2}{7} - \frac{1}{7}}{- \frac{3}{2} - (-\frac{1}{2}) }} [/tex]
- [tex] \sf{m = \frac{\frac{1}{7}}{-1} } [/tex]
- [tex] {\sf \therefore m = {\boxed{\green{\sf{- \frac{1}{7}}}}}} [/tex]
[tex]{\: \:}[/tex]
[tex] {\huge{\overline{\sf{Hope\:It\:Helps}}}} [/tex]
#LetsLearn #BeBrainly ✌☺