👤

A circle with a radius of 5 ft is circumscribed about a square. What is the perimeter of the square? *​

Sagot :

Answer:

perimeter =48√2 units

Explanation:

When a square is inscribed in a circle, the diagonal of the square equals the diameter of the circle.

As shown in the figure, BD=2⋅r

where BD is the diagonal of the square and r is the radius of the circle.

ΔABD is a right isosceles triangle with hypotenuse (BD) and two equal legs (a).

By Pythagorean theorem,

BD2=a2+a2

Given r=12,

⇒(2×12)2=2a2

⇒576=2a2

⇒a2=5762=288

⇒a=√288=√144×2=12√2

Perimeter of the square =4a=4×12√2=48√2 units

Answer:

{\blue{\rule{25pt}{99999pt}{\purple{\rule{30pt}{99999pt}{\red{\rule{50pt}{99999pt}{\purple{\rule{30pt}{99999pt}{\blue{\rule{25pt}{99999pt} }}}}}}}}}} {\blue{\rule{25pt}{99999pt}{\purple{\rule{30pt}{99999pt}{\red{\rule{50pt}{99999pt}{\purple{\rule{30pt}{99999pt}{\blue{\rule{25pt}{99999pt} }}}}}}}}}} {\blue{\rule{25pt}{99999pt}{\purple{\rule{30pt}{99999pt}{\red{\rule{50pt}{99999pt}{\purple{\rule{30pt}{99999pt}{\blue{\rule{25pt}{99999pt} }}}}}}}}}} {\blue{\rule{25pt}{99999pt}{\purple{\rule{30pt}{99999pt}{\red{\rule{50pt}{99999pt}{\purple{\rule{30pt}{99999pt}{\blue{\rule{25pt}{99999pt} }}}}}}}}}}