👤

Find the value of the discriminant . How will you describe the number and type of roots for 3x² - 6x + 2 = 0?​

Sagot :

QUESTION:

Find the value of the discriminant . How will you describe the number and type of roots for 3x² - 6x + 2 = 0?

[tex]\huge\purple{\overline{\quad\quad\quad\quad\quad\quad\quad\quad\quad \ \ \ }}[/tex]

ANSWER:

1 + [tex]\frac {1}{3}[/tex][tex]\sqrt {3}[/tex] or 1 + [tex]\frac {-1}{3}[/tex][tex]\sqrt {3}[/tex]

[tex] \\ [/tex]

SOLUTION:

Step 1: Subtract 2 from both sides.

3x² - 6x + 2 − 2 = 0 − 2

3x2 - 6x = −2

[tex] \\ [/tex]

Step 2: Since the coefficient of 3x^2 is 3, divide both sides by 3.

[tex]\frac {3x²\:-\:6x}\blue{3}[/tex] = [tex]\frac {-2}\blue{3}[/tex]

x² - 2x = [tex]\frac {-2}{3}[/tex]

[tex] \\ [/tex]

Step 3: The coefficient of -2x is -2. Let b=-2.

Then we need to add (b/2)^2=1 to both sides to complete the square.

Add 1 to both sides.

x² − 2x + 1 = [tex]\frac {-2}{3}[/tex] + 1

x² − 2x + 1 = [tex]\frac {1}{3}[/tex]

[tex] \\ [/tex]

Step 4: Factor left side.

(x − 1)² = [tex]\frac {1}{3}[/tex]

[tex] \\ [/tex]

Step 5: Take square root.

x − 1 = ±√[tex]\frac {1}{3}[/tex]

[tex] \\ [/tex]

Step 6: Add 1 to both sides.

x - 1 + 1 = 1 ±√[tex]\frac {1}{3}[/tex]

x = 1 ±[tex]\sqrt\frac {1}{3}[/tex]

The answer is = 1 + [tex]\frac {1}{3}[/tex][tex]\sqrt {3}[/tex] or 1 + [tex]\frac {-1}{3}[/tex][tex]\sqrt {3}[/tex]

[tex]\huge\purple{\overline{\quad\quad\quad\quad\quad\quad\quad\quad\quad \ \ \ }}[/tex]

24 days before Christmas

#CarryOnLearning

[tex] \begin{gathered} \begin{gathered}\tiny\boxed{\begin{array}{} \red{\bowtie} \:\:\:\:\:\:\: \red{\bowtie}\\ \fcolorbox{color}{violet}{\tt{} > <}\\ \: \smile\end{array}}\end{gathered}\end{gathered} [/tex]