Sagot :
Step-by-step explanation:
The argument of a logarithm must be positive! Thus, it is also necessary to take into account any inequalities resulting from the arguments being positive; for example, an inequality involving the term log 2 ( 2 x − 3 ) \log_2 (2x-3) log2(2x−3) immediately requires x > 3 2 x>\frac{3}{2} x>23.
Answer:
If a>1a>1 and x>yx>y, then \log_ax>\log_aylog
a
x>log
a
y. Otherwise, if 0<a<10<a<1, then \log_ax<\log_aylog
a
x<log
a
y.
Answer:
Step-by-step explanation: