Sagot :
[tex]\large{\mathcal{SOLUTION:}}[/tex]
Using the Distance formula:
- [tex]\rm{D = \sqrt{(x_2-x_1)²+(y_2-y_1)²}}[/tex]
[tex] \\ [/tex]
Given:
- [tex]x_1 = 1[/tex]
- [tex]x_2= 7[/tex]
- [tex]y_1= 3[/tex]
- [tex]y_2= 11[/tex]
[tex] \\ [/tex]
Plugging the values , we get:
- [tex]\rm{D = \sqrt{(x_2-x_1)²+(y_2-y_1)²}}[/tex]
- [tex]\rm{D = \sqrt{(7-1)²+(11-3)²}}[/tex]
- [tex]\rm{D = \sqrt{(6)²+(8)²}}[/tex]
- [tex]\rm{D = \sqrt{36+64}}[/tex]
- [tex]\rm{D = \sqrt{100}}[/tex]
- [tex]\rm{D = 100}[/tex]
Therefore , the distance between point A and point B is 10
[tex] \\ [/tex]
[tex]\large{\mathcal{ANSWER:}}[/tex]
- LETTER B (10)
[tex] \\ [/tex]
[tex]\boxed{\begin{array}{} \blue{\text{DONT RELY ON CHANCES,}} \\ \red{\text{ WORK FOR THE HARDEST }} \\ \end{array}}[/tex]
[tex]\large{\mathbb{QUESTION:}}[/tex]
Find the distance between point A (1,3) and B (7,11).
- a. 100
- b.10
- c.2√
- d.5√
[tex]\large{\mathbb{ANSWER:}}[/tex]
- [tex] \tt \green{B.\:10}[/tex]
[tex]\large{\mathbb{OTHER\:INFORMATION}}[/tex]
- To calculate the distance AB between point A(x1,y1) and B(x2,y2) , first draw a right triangle which has the segment ¯AB as its hypotenuse.
[tex]\color{skyblue}{\boxed{\tt{MissyRiel}}}[/tex]
[tex] \tt \green{DON'T\:BE\:AFRAID\:TO\:SHOW\:YOUR\:TALENTS}[/tex]
^_^