👤

find the distance between point A (1,3) and B (7,11)

a.100
b.10
c.2√
d.5√​


Sagot :

[tex]\large{\mathcal{SOLUTION:}}[/tex]

Using the Distance formula:

  • [tex]\rm{D = \sqrt{(x_2-x_1)²+(y_2-y_1)²}}[/tex]

[tex] \\ [/tex]

Given:

  • [tex]x_1 = 1[/tex]
  • [tex]x_2= 7[/tex]
  • [tex]y_1= 3[/tex]
  • [tex]y_2= 11[/tex]

[tex] \\ [/tex]

Plugging the values , we get:

  • [tex]\rm{D = \sqrt{(x_2-x_1)²+(y_2-y_1)²}}[/tex]

  • [tex]\rm{D = \sqrt{(7-1)²+(11-3)²}}[/tex]

  • [tex]\rm{D = \sqrt{(6)²+(8)²}}[/tex]

  • [tex]\rm{D = \sqrt{36+64}}[/tex]

  • [tex]\rm{D = \sqrt{100}}[/tex]

  • [tex]\rm{D = 100}[/tex]

Therefore , the distance between point A and point B is 10

[tex] \\ [/tex]

[tex]\large{\mathcal{ANSWER:}}[/tex]

  • LETTER B (10)

[tex] \\ [/tex]

[tex]\boxed{\begin{array}{} \blue{\text{DONT RELY ON CHANCES,}} \\ \red{\text{ WORK FOR THE HARDEST }} \\ \end{array}}[/tex]

[tex]\large{\mathbb{QUESTION:}}[/tex]

Find the distance between point A (1,3) and B (7,11).

  • a. 100
  • b.10
  • c.2√
  • d.5√

[tex]\large{\mathbb{ANSWER:}}[/tex]

  • [tex] \tt \green{B.\:10}[/tex]

[tex]\large{\mathbb{OTHER\:INFORMATION}}[/tex]

  • To calculate the distance AB between point A(x1,y1) and B(x2,y2) , first draw a right triangle which has the segment ¯AB as its hypotenuse.

[tex]\color{skyblue}{\boxed{\tt{MissyRiel}}}[/tex]

[tex] \tt \green{DON'T\:BE\:AFRAID\:TO\:SHOW\:YOUR\:TALENTS}[/tex]

^_^