👤

its volume V. If r varies directly as s and inversly as t, r=27, when s=18 and t=2 find: 1. r when t=3 and s=27 2. s when t=2 and r=3 3. t when r=1 and s=6 4. r when s=4 and 1=2 5. s when t=5 and r=6​

Sagot :

Combined Variation

[tex]\bold{r=\frac{ks}{t}}\:\:,\:\:\sf s=\frac{rt}{k}\:\:,\:\:\sf t=\frac{ks}{r}\:\:,\:\:\sf k=\frac{rt}{s}[/tex]

Given:

r=27, when s=18 and t=2

Find the constant (k)      

[tex]\begin{aligned}&\sf k=\frac{rt}{s}\\&\sf k=\frac{27(2)}{18}\\&\sf k=\frac{54}{18}\\&\sf k=3\end{aligned}[/tex]

Use k=3 to solve the following

1. r when t=3 and s=27

[tex]\begin{aligned}&\sf r=\frac{ks}{t}\\&\sf r=\frac{\cancel3\times 27}{\cancel3}\\&\boxed{\bold{\purple{r=27}}}\end{aligned}[/tex]

2. s when t=2 and r=3

[tex]\begin{aligned}&\sf s=\frac{rt}{k}\\&\sf s=\frac{\cancel3\times 2}{\cancel3}\\&\boxed{\bold{\purple{s=2}}}\end{aligned}[/tex]

3. t when r=1 and s=6

[tex]\begin{aligned}&\sf t=\frac{ks}{r}\\&\sf t=\frac{3\times 6}{1}\\&\boxed{\bold{\purple{t=18}}}\end{aligned}[/tex]

4. r when s=4 and t=2

[tex]\begin{aligned}&\sf r=\frac{ks}{t}\\&\sf r=\frac{3\times \cancel4}{\cancel2}\\&\sf r=3\times 2\\&\boxed{\bold{\purple{r=6}}}\end{aligned}[/tex]

5. s when t=5 and r=6

[tex]\begin{aligned}&\sf s=\frac{rt}{k}\\&\sf s=\frac{\cancel6 \times 5}{\cancel3}\\&\sf s=2\times 5\\&\boxed{\bold{\purple{s=10}}}\end{aligned}[/tex]