Sagot :
Answer:
A=xB
B=C/y
6=2x
x=3
2=3/y
y=3/2
So when B=8,
8=6/y
y=3/4
As y=x/2
x/2=3/4
x=3/2
S0, A is
3/2*8
12
Step-by-step explanation:
[tex]\sf{\underline{{Problem:}}}[/tex]
If a varies directly as b and inversely as c, and a = 8 when b = 4 and c = 2. Find a when b = 4 and c =8?
[tex]\sf{\underline{{Answer:}}}[/tex]
'As a varies directly with b and inversely with c, we have: "a = kb/c" as our guide to find the constant k variation
- [tex] \tt{a = \frac{kb}{c}} [/tex]
- [tex] \tt{8 = \frac{k(4)}{2}} [/tex]
- [tex] \tt{8 = \frac{4k}{2} }[/tex]
- [tex] \tt{16=4k}[/tex]
- [tex] \tt\green{k = 4}[/tex]
Hence, the equation of variation is [tex] \frac{a = 4b}{c}[/tex]
Substitute the values b = 4 and c = 8 to the equation [tex] \frac{a = 4b}{c}[/tex]
- [tex] \tt{a = \frac{4(4)}{8}} [/tex]
- [tex] \tt{a = \frac{16}{8}} [/tex]
- [tex] \tt\green{a = 2}[/tex]
Hence, a = 2 when b = 4 and c = 8
•••••••••••••••••••••••••••••••••••••••••••••••••
#CarryOnLearning
ʕっ•ᴥ•ʔっ