Sagot :
✒️VARIATIONS
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{PROBLEM}:} [/tex]
- if y varies inversely as x and y=1/5 when x=9, find y when x=-3
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{ANSWER}:} [/tex]
[tex] \qquad \LARGE \: \rm{y = \text- \frac{\,3\,}{5}} \\ [/tex]
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]
» Formulate an equation of an inverse variation in which k is the constant of the variation.
- [tex] y = \frac{\,k\,}{x} \\ [/tex]
» Find the constant.
- [tex] \frac{\,1\,}{5} = \frac{\,k\,}{9} \\ [/tex]
- [tex] 5k = 9 [/tex]
- [tex] \frac{5k}{5} = \frac{\,9\,}{5} \\ [/tex]
- [tex] k = \frac{\,9\,}{5} \\ [/tex]
» Find y when x is -3.
- [tex] y = \frac{\,9\,}{5} \div x \\ [/tex]
- [tex] y = \frac{\,9\,}{5} \div (\text-3) \\ [/tex]
- [tex] y = \frac{\,9\,}{5} \cdot \bigg(\text-\frac{\,1\,}{3}\bigg) \\ [/tex]
- [tex] y = \text-\frac{9}{15} \\ [/tex]
- [tex] y = \text-\frac{3}{5} \\ [/tex]
[tex] \therefore [/tex] The value of y is -3/5
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
(ノ^_^)ノ
✒️[tex]\large \bold{QUESTION} [/tex]
If y varies inversly as x and y = 1/5 when x = 9, find y when x = -3
=============================
✒️[tex]\large \bold{ANSWER} [/tex]
[tex]y = - \frac{3}{5} [/tex]
=============================
✒️[tex]\large \bold{SOLUTION} [/tex]
Step 1 : Formulate
Base on the given conditions, formulate:
[tex]y = \frac{k}{x} [/tex]
----------------------------------------
Step 2 : Subtitute
- [tex]y = \frac{1}{5} [/tex]
- [tex]x = 9[/tex]
- [tex]into \: y = \frac{k}{x} [/tex]
----------------------------------------
Step 3 : Solve the Equation
- [tex] \frac{1}{5} = \frac{k}{9} [/tex]
- [tex] \frac{k}{9} = \frac{1}{5} [/tex]
- [tex]k = \frac{1}{5} \times 9[/tex]
- [tex]k = \frac{9}{5} [/tex]
----------------------------------------
Step 4 : Find the Function
Find the equation of the function.
- [tex]y = \frac{9}{5x} [/tex]
----------------------------------------
Step 5 : Subtitute
Subtitute x = -3 into [tex]y = \frac{9}{5x} [/tex]
- [tex]y = \frac{9}{5x( - 3)} [/tex]
----------------------------------------
Step 6 : Solve the Equation
- [tex]y = \frac{9}{5x( - 3)} [/tex]
- [tex]y = - \frac{ 9}{5x + 3} [/tex]
- [tex]y = \frac{9}{15} [/tex]
- [tex]y = - \frac{ 3}{5} [/tex]
----------------------------------------
- So the Correct Answer is [tex]y = - \frac{ 3}{5} [/tex]