👤

find the area of the shaded region given m∠SAT = 90° and the radius of circle A is 12cm. Show your complete solution.

need po talaga ngayon!​


Find The Area Of The Shaded Region Given MSAT 90 And The Radius Of Circle A Is 12cm Show Your Complete Solutionneed Po Talaga Ngayon class=

Sagot :

✏️SECTOR

===============================

Problem: Find the area of the shaded region given m∠SAT = 90° and the radius of circle A is 12cm. Show your complete solution.

Solution: Find the area of the product of the circle's area and the ratio of the central angle at 360 degrees.

[tex] \begin{aligned}& \bold{ \color{lightblue}Formula:} \\ & \boxed{A_{seg} = \frac{ \theta}{360 \degree} \cdot\pi {r}^{2} } \end{aligned}[/tex]

  • [tex] \begin{aligned}{A_{seg} = \frac{90 \degree}{360 \degree} \cdot\pi (12cm)^{2} } \end{aligned}[/tex]

  • [tex] \begin{aligned}{A_{seg} = \frac{1}{4} \cdot\pi (144cm^{2}) } \end{aligned}[/tex]

  • [tex] \begin{aligned}{A_{seg} = \frac{\pi (144cm^{2}) }{4} } \end{aligned}[/tex]

  • [tex] \begin{aligned}{A_{seg} = \pi (36cm^{2}) } \end{aligned}[/tex]

- Let 3.14 be the approximate value of pi.

  • [tex] \begin{aligned}{A_{seg} ≈ (3.14) (36cm^{2}) } \end{aligned}[/tex]

  • [tex] \begin{aligned}{A_{seg} ≈ 113.04cm^{2} } \end{aligned}[/tex]

- Therefore, the area of the sector is:

  • [tex] \large \rm Sector \: Area = \boxed{ \rm \green{ \: 113.04 \: sq. \: cm \: }}[/tex]

===============================

#CarryOnLearning

#LearnWithBrainly