👤

what type of triangle is formed by the vertices P(-2, 1), Q(3, 2), and R(0, -2)

Sagot :

✒️DISTANCES

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{PROBLEM}:} [/tex]

  • What type of triangle is formed by the vertices P(-2, 1), Q(3, 2), and R(0, -2)

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{ANSWER}:} [/tex]

[tex] \qquad \Large \:\: \rm Scalene \: Triangle [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]

» Find the distances between all of these points connected indicating as the sides of the triangle using the distance formula.

[tex] \begin{align} & \bold{Formula:} \\ & \quad \boxed{\rm d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2\,}} \end{align} [/tex]

Find side PQ: Find the distance between (-2, 1) and (3,2)

  • [tex] PQ = \sqrt{(3-(\text-2))^2 + (2-1)^2 \,} [/tex]

  • [tex] PQ = \sqrt{(3+2)^2 + (2-1)^2 \,} [/tex]

  • [tex] PQ = \sqrt{(5)^2 + (1)^2 \,} [/tex]

  • [tex] PQ = \sqrt{25 + 1\,} [/tex]

  • [tex] PQ = \sqrt{26\,} [/tex]

Find side QR: Find the distance between (3,2) and (0,-2)

  • [tex] QR = \sqrt{(0-3)^2 + (\text-2-2)^2\,} [/tex]

  • [tex] QR = \sqrt{(\text-3)^2 + (\text-4)^2\,} [/tex]

  • [tex] QR = \sqrt{9 + 16\,} [/tex]

  • [tex] QR = \sqrt{25\,} [/tex]

  • [tex] QR = 5[/tex]

Find side RP: Find the distance between (0,-2) and (-2, 1)

  • [tex] RP = \sqrt{(\text-2-0)^2 + (1-(\text-2))^2\,} [/tex]

  • [tex] RP = \sqrt{(\text-2-0)^2 + (1+2)^2\,} [/tex]

  • [tex] RP = \sqrt{(\text-2)^2 + (3)^2\,} [/tex]

  • [tex] RP = \sqrt{4 + 9\,} [/tex]

  • [tex] RP = \sqrt{13\,} [/tex]

» Since all of the sides have different lengths, then this kind of triangle is an Scalene Triangle

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

(ノ^_^)ノ

Answer:

[tex]\huge{✏Problem}[/tex]

What type of triangle is formed by the vertices P(-2, 1), Q(3, 2), and R(0, -2)?

[tex]\huge{✏Answer}[/tex]

[tex]Scalene \: Triangle[/tex]

[tex]\huge{✏Solution}[/tex]

Given:

Vertices P(-2, 1), Q(3, 2), and R(0, -2)

Find:

Type of triangle

Solution:

[tex]PQ = \sqrt{(3+2) ^{2} + (2 - 1)} = \sqrt{26} [/tex]

[tex]QR = \sqrt{(3 - 0)^{2} + (2 + 2) ^{2} } = 5[/tex]

[tex]RP = \sqrt{(0 + 2) ^{2} +( - 2 - 1) ^{2}} = \sqrt{13} [/tex]

The graph is in the picture

View image Subcribe198