Sagot :
FUTURE VALUE OF AN ORDINARY ANNUITY:
[tex]\sf\large{C\:=\:A × \left[ \frac{(1\:+\:i)^n -\:1}{i} \right]}[/tex]
where
C = sum of an annuity
A = annuity payment
i = periodic interest rate
n = total compounding periods
[tex]{}[/tex]
A = P2200
i = [tex]\sf\large{ \frac{r}{f}}[/tex]
= [tex]\sf\large{ \frac{11\%}{2}}[/tex]
= 5.5%
= 0.055
n = f × t
= 2 × 15
= 30
Plug in these values into the formula.
[tex]\sf{C\:=\:2200 × \left[ \frac{(1\:+\:0.55)^{30} -\:1}{0.055} \right]}[/tex]
[tex]\sf{C\:=\:2200 × \left[ \frac{(1.055)^{30} -\:1}{0.055} \right]}[/tex]
C = 2200 × 72.44
C ≈ 159368
Thus, the future value of the annuity is P159368.
Answer: P159368