given the figure below solve for the value x
![Given The Figure Below Solve For The Value X class=](https://ph-static.z-dn.net/files/d51/0c35375e10ddc1e07bb797ebb6347a86.jpg)
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{DIRECTIONS}:} [/tex]
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{ANSWERS}:} [/tex]
[tex] \qquad \Large \rm{1) \; 15 \: units\:} [/tex]
[tex] \qquad \Large \rm{2) \; 20 \: units\:} [/tex]
[tex] \qquad \Large \rm{3) \; 52\degree\:} [/tex]
[tex] \qquad \Large \rm{4) \; 5 \: units\:} [/tex]
[tex] \qquad \Large \rm{5) \; 124 \degree\:} [/tex]
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{SOLUTIONS}:} [/tex]
» Radius BA is perpendicular to tangent segment AC. Thus, ∆BAC is a right triangle. Find x using the Pythagorean theorem.
[tex] \therefore [/tex] The length of segment x is 15 units
[tex] \: [/tex]
» Radius CQ is perpendicular to tangent segment QM. Thus, ∆CQM is a right triangle. Find x using the Pythagorean Theorem.
[tex] \therefore [/tex] The length of segment x is 20 units
[tex] \: [/tex]
» Angles T and S are supplementary. Thus, angles R and O are also supplementary.
[tex] \therefore [/tex] The measure of angle x is 52°
[tex] \: [/tex]
» Tangent segments AB and AD both drawn on circle C. Thus, their lengths are equal.
[tex] \therefore [/tex] The length of segment x is 5 units
[tex] \: [/tex]
» Angles Q and S are supplementary, Thus, angles R and A are also supplementary.
» The measure of a central angle subtended by the two radii is equal to its intercepted arc.
[tex] \therefore [/tex] The measure of the arc x is 124°
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
(ノ^_^)ノ