👤

kimberly sister is 36. she is 14 years old than two times Kimberly age. How old is kimberly?​



Sagot :

✏️AGES

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

[tex]\underline{\mathbb{PROBLEM:}}[/tex]

  • Kimberly sister is 36. She is 14 years old than than two times Kimberly's age. How old is Kimberly.

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

[tex]\underline{\mathbb{ANSWER:}}[/tex]

[tex]\qquad\large\rm»\:\: \green{Kimberly\:is\: 25\: years\: old}[/tex]

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

[tex]\underline{\mathbb{SOLUTION:}}[/tex]

- Represent x and y as the ages of her sister and Kimberly respectively. Formulated equations of the given statement.

  • [tex]\begin{cases}x=36&\red{(eq. \:1)}\\x=2y-14&\red{(eq. \: 2)} \end{cases}[/tex]

- Substitute x from the first equation to the second equation in terms of y which is the age of Kimberly.

  • [tex]\begin{cases}x=36\\36 = 2y - 14\end{cases}[/tex]

  • [tex]\begin{cases}x=36\\36 + 14 = 2y\end{cases}[/tex]

  • [tex]\begin{cases}x=36\\50 = 2y\end{cases}[/tex]

  • [tex]\begin{cases}x=36 \\ \begin{gathered} \frac{50}{2} = \frac{ \cancel2y}{ \cancel2} \end{gathered}\end{cases}[/tex]

  • [tex]\begin{cases}x=36\\y = 25\end{cases}[/tex]

[tex]\therefore[/tex] Kimberly is 25 years old.

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

#CarryOnLearning