Sagot :
Answer:
w varies directly as the square of x and inversely as p and q. If w=12 when x=4,p=2 and q=20, find when w when x=3,p=8 and q=5.
[tex]w = \frac{k {x}^{2} }{pq} \\ [/tex]
Evaluate the values
[tex]12 = \frac{k( {4}^{2} )}{(2)(20)} \\ [/tex]
square 4
[tex]12 = \frac{k(16)}{40} \\ [/tex]
Multiply 40 both sides
[tex](40)(12) = \frac{k(16)}{40} (40) \\ [/tex]
[tex]480= \frac{k(16)}{ \cancel{40}} ( \cancel{40}) \\ [/tex]
[tex]480= k(16) \\ [/tex]
Divide both sides by 16
[tex] \frac{480}{16} = \frac{k(16)}{16} \\ \frac{480}{16} = \frac{k( \cancel{16})}{ \cancel{16}} \\ [/tex]
[tex] \\ \boxed{k = 30} \\ \\ [/tex]
Find when w when x=3,p=8 and q=5. Use k=30
[tex]w = \frac{k {x}^{2} }{pq} \\ [/tex]
Evaluate the values
[tex]w = \frac{(30)( {3}^{2} )}{(8)(5)} \\ [/tex]
Square 3
[tex]w = \frac{(30)( 9 )}{(8)(5)} \\ [/tex]
Mutiply 8 by 5
[tex]w = \frac{(30)( 9 )}{(40)} \\ [/tex]
Mutiply 30 by 9
[tex]w = \frac{(270 )}{(40)} \\ [/tex]
Simplify
[tex] \\ \green{\boxed{ \boxed{ \bold{w = \frac{27}{4} }}}} \\ \\ [/tex]