👤

Add or subtract the following polynomials.

1. (6x³-4)+(-2x³ +9)

2. (x+5) + (2x + 4x² - 2)

3. (x²+x)+(x²-11)

4. (8x-4x²)+(3x - 9x²)

5. (2x² + 6x + 4) + (5x²-7)

6. (3x²-x+11)-(x²+2x+8)​


Sagot :

✒️Expressions

[tex]••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \huge{\colorbox{black}{\color{lavender}{\tt{‡ANSWERS‡}}}}[/tex]

→ 1.) [tex]\small\color{green}\boxed{4x³ +5}[/tex]

→ 2.) [tex]\small\color{green}\boxed{4x² - x + 3}[/tex]

→ 3.) [tex]\small\color{green}\boxed{2x² + x - 11}[/tex]

→ 4.) [tex]\small\color{green}\boxed{11x - 13x²}[/tex]

→ 5.) [tex]\small\color{green}\boxed{7x² + 6x - 3}[/tex]

→ 6.) [tex]\small\color{green}\boxed{2x² - 3x + 3}[/tex]

[tex]••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large{\colorbox{black}{\color{gold}{\tt{♪Step\:by\:Step\:Solution♪}}}}[/tex]

1.) Solution number 1. ↓

Step 1

Remove unnecessary parentheses

[tex]6{x}^{3} - 4 + (2 {x}^{3} + 9)[/tex]

When there is a + in front of expression in parentheses, the expression remains the same

[tex]6 {x}^{3} - 4 - 2 {x}^{3} + 9[/tex]

Step 2

Collect like terms

[tex]4 {x}^{3} - 4 + 9[/tex]

Calculate the sum

[tex]4 {x}^{3} + 5 [/tex]

2.) Solution number 2.↓

Step 1

Remove unnecessary parentheses

[tex]x + 5 + ( - 2x + 4 {x}^{2} - 2)[/tex]

When there is a + in front of expression in parentheses, the expression remains the same

[tex]x + 5 - 2x + 4 {x}^{2} - 2[/tex]

Step 2

Collect like terms

[tex] - x + 5 + 4 {x}^{2} - 2[/tex]

Subtract the numbers

[tex] - x + 3 + 4 {x}^{2} [/tex]

Step 3

Use the commutative property to reorder the terms

[tex]4 {x}^{2} - x + 3[/tex]

3.) Solution number 3.↓

Step 1

Remove unnecessary parentheses

[tex] {x}^{2} + x + ( {x}^{2} - 11)[/tex]

When there is a + in front of expression in parentheses, the expression remains the same

[tex] {x}^{2} + x + {x}^{2} - 11[/tex]

Step 2

Collect like terms

[tex]2 {x}^{2} + x - 11[/tex]

4.) Solution number 4.

Step 1

Remove unnecessary parentheses

[tex]8x - 4 {x}^{2} + (3x - 9 {x}^{2} )[/tex]

When there is a + in front of expression in parentheses, the expression remains the same

[tex]8x - 4 {x}^{2} + 3x - 9 {x}^{2} [/tex]

Step 2

Collect like terms

[tex]11x - 4 {x}^{2} - 9 {x}^{2} [/tex]

Collect like terms

[tex]11x - 13 {x}^{2} [/tex]

5.) Solution number 5.

Step 1

Remove unnecessary parentheses

[tex]2 {x}^{2} + 6x + 4 + (5 {x}^{2} - 7)[/tex]

When there is a + in front of expression in parentheses, the expression remains the same

[tex]2 {x}^{2} + 6x + 4 + 5 {x}^{2} - 7[/tex]

Step 2

Collect like terms

[tex]7 {x}^{2} + 6x + 4 - 7[/tex]

Calculate the difference

[tex]7 {x}^{2} + 6x - 3[/tex]

6.) Solution number 6.

Step 1

Remove unnecessary parentheses

[tex]3 {x}^{2} - x + 11 - ( {x}^{2} + 2x + 8)[/tex]

When there is a – in front of an expression in parentheses, change the sign of each term of the expression and remove the parentheses

[tex]3 {x}^{2} - x + 11 - {x}^{2} - 2x - 8[/tex]

Step 2

Collect like terms

[tex]2 {x}^{2} - x + 11 - 2x - 8[/tex]

Collect like terms

[tex]2 {x}^{2} - 3x + 11 - 8[/tex]

Subtract the numbers

[tex]2 {x}^{2} - 3x + 3[/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

^_^