👤

PROBLEM SOLVING:

23. Suppose w varies directly as x and inversely as the square of y. When x = 8 when y = 4 and w = 18, what is the value of w if x = 4 and y = 6?​


Sagot :

Answer:

w=kx/y^2

w=kx/y^218=k(8)

w=kx/y^218=k(8)(4)^2

w=kx/y^218=k(8)(4)^2k(8)= 18(16)

w=kx/y^218=k(8)(4)^2k(8)= 18(16)k(8)=288

w=kx/y^218=k(8)(4)^2k(8)= 18(16)k(8)=288k=288/8

w=kx/y^218=k(8)(4)^2k(8)= 18(16)k(8)=288k=288/8k=36

w=kx/y^218=k(8)(4)^2k(8)= 18(16)k(8)=288k=288/8k=36w=(36)(4)

w=kx/y^218=k(8)(4)^2k(8)= 18(16)k(8)=288k=288/8k=36w=(36)(4)(6)^2

w=kx/y^218=k(8)(4)^2k(8)= 18(16)k(8)=288k=288/8k=36w=(36)(4)(6)^2w= 144

w=kx/y^218=k(8)(4)^2k(8)= 18(16)k(8)=288k=288/8k=36w=(36)(4)(6)^2w= 14436

w=kx/y^218=k(8)(4)^2k(8)= 18(16)k(8)=288k=288/8k=36w=(36)(4)(6)^2w= 14436w=4

Step-by-step explanation:

Pa brainlest ^-^