👤

Simplify the Following Radicals with solution ^-^

[tex] \sqrt{144x {y}^{2} } {z}^{3} [/tex]

Automatically Reported kung incomplete and Non Sense


Sagot :

[tex]{\overline{ \underline{ \huge {\boxed{\bold{ANSWER:}}}}}}[/tex]

[tex]12yz \sqrt{xz} [/tex] is the answer

[tex] \huge \pink{SOLUTION}[/tex]

Write the number in Exponintial Form with a base of 12.

  • [tex] \sqrt{12 {}^{2} xy {}^{2} z {}^{3} } [/tex]

Expand the expression.

  • [tex] \sqrt{12 {}^{2} xy {}^{2} z {}^{2 + 1} } [/tex]
  • [tex] \sqrt{12 {}^{2}xy ^{2} z {}^{2} \times \: z {}^{1} } [/tex]

Any expression raise to the power of 1 equals itself.

  • [tex] \sqrt{12 {}^{2} xy {}^{2}z {}^{2} \times \: z {}^{1} } [/tex]
  • [tex] \sqrt{12 {}^{2}xy {}^{2}z {}^{2} \times \: z} [/tex]

The root of the product is equal to the product of the roots of each factor

  • [tex] \sqrt{ {12}^{2} } \sqrt{ {y}^{2} } \sqrt{ {z}^{2} } \sqrt{ \times \: z} [/tex]

Simplify the roots

Reduce the index of the radical and exponent with 2,. then that result will be

  • [tex]12yz \sqrt{xz} [/tex]

#CarryOnLearning

GOOD AFTERNOON

ᴀɴꜱᴡᴇʀᴇᴅ ʙʏ: ᴋɪᴢᴏᴏᴛʜᴇᴍᴏᴅ♤